J9九游会·(中国)真人游戏第一品牌

    首页>科学研究>论文专著

倪希亮等:Spatio-Temporal Pattern Estimation of PM2.5 in Beijing-Tianjin-Hebei Region Based on MODIS AOD and Meteorological Data Using the Back Propagation Neural Network

作者:来源:发布时间:2018-06-25
 Spatio-Temporal Pattern Estimation of PM2.5 in Beijing-Tianjin-Hebei Region Based on MODIS AOD and Meteorological Data Using the Back Propagation Neural Network
作者:Ni, XL (Ni, Xiliang)[ 1 ] ; Cao, CX (Cao, Chunxiang)[ 1 ] ; Zhou, YK (Zhou, Yuke)[ 2 ] ; Cui, XH (Cui, Xianghui)[ 3 ] ; Singh, RP (Singh, Ramesh P.)[ 4 ]
ATMOSPHERE
卷: 9  期: 3
文献号: 105
DOI: 10.3390/atmos9030105
出版年: MAR 2018
文献类型:Article
摘要
With the economic growth and increasing urbanization in the last three decades, the air quality over China has continuously degraded, which poses a great threat to human health. The concentration of fine particulate matter (PM2.5) directly affects the mortality of people living in the polluted areas where air quality is poor. The Beijing-Tianjin-Hebei (BTH) region, one of the well organized urban regions in northern China, has suffered with poor air quality and atmospheric pollution due to recent growth of the industrial sector and vehicle emissions. In the present study, we used the back propagation neural network model approach to estimate the spatial distribution of PM2.5 concentration in the BTH region for the period January 2014-December 2016, combining the satellite-derived aerosol optical depth (S-DAOD) and meteorological data. The results were validated using the ground PM2.5 data. The general method including all PM2.5 training data and 10-fold cross-method have been used for validation for PM2.5 estimation (R-2 = 0.68, RMSE = 20.99 for general validation; R-2 = 0.54, RMSE = 24.13 for cross-method validation). The study provides a new approach to monitoring the distribution of PM2.5 concentration. The results discussed in the present paper will be of great help to government agencies in developing and implementing environmental conservation policy.
通讯作者地址: Cao, CX (通讯作者)
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China.
地址:
[ 1 ] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[ 2 ] Chinese Acad Sci, Inst Geog & Nat Resources Res, Ecol Observing Network & Modeling Lab, Beijing 100101, Peoples R China
[ 3 ] Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Peoples R China
[ 4 ] Chapman Univ, Schmid Coll Sci & Technol, Sch Life & Environm Sci, Orange, CA 92866 USA
附件下载