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Forest Canopy Height Extraction in Rugged
Areas With ICESat/GLAS Data

Xiaoyi Wang, Huabing Huang, Peng Gong, Caixia Liu, Congcong Li, and Wenyu Li

Abstract—Geoscience Laser Altimeter System data have been
widely used in forest canopy height extraction. It is still challenging
over rugged areas. In this paper, we propose a forest canopy
height extraction method consisting of the Savitzky–Golay filter
and fitting, Sigbeg determination based on the fitting results, and
slope correction for rugged areas, particularly for slopes ranging
from 5◦ to 15◦. The method was applied to both the Xinlin Forest,
China, and Santa Rosa National Park, Costa Rica. The perfor-
mance of this method was validated by field measurement and
Laser Vegetation Imaging Sensor data. The goodness of fit (R2)
reached 0.73 and 0.78, respectively, and root-mean-squared errors
(RMSEs) were 2.27 and 3.75 m over the two areas, respectively.

Index Terms—Forest inventory, global forest monitoring.

I. INTRODUCTION

FOREST canopy height is an important structural parameter
in forest inventory and helpful to the understanding of

forest ecosystem function and modeling of terrestrial carbon cy-
cling [1], [2]. The Geoscience Laser Altimeter System (GLAS)
onboard the National Aeronautics and Space Administration
(NASA) Ice, Cloud, and land Elevation satellite (ICESat) is the
only direct measurement sensor that can provide fast tree height
solutions at the global scale [3], [4]. However, the accuracy
of the resulting tree heights is affected by terrain slope and
roughness [5].

The beam of GLAS covers an area of approximately 65 m in
diameter and records the reflection waveform of aboveground
objects and ground surface, consisting of a series of discrete
sampling points with multiple peaks. NASA provides users
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with land surface altimetry product, GLA14, derived from
GLAS raw waveforms. The widely accepted procedure for
canopy height extraction is as follows.

Initially, a waveform is filtered with a Gaussian filter, and
the width of the filter is almost the same as the transmitted
waveform. After that, the “Signal beginning point” (Sigbeg),
which stands for the tree top, is defined as the point which
goes beyond the threshold. Then, discrete sampling points are
expressed as the sum of multiple Gaussian waves through
Gaussian decomposition, and the last Gaussian wave peak rep-
resenting the ground surface could be determined. Eventually,
the tree extraction is calculated by the vertical distance between
Sigbeg and the last Gaussian peak.

Studies have shown that the last Gaussian wave peak may be
caused by small trees [6] or noises and does not stand for the
ground return. Some improvements have been made to choose
the stronger one among the last two Gaussian decomposition
results [7]. Whereas the chosen peak may not be able to
represent ground without proper noise reduction, there have
been some improvements of waveform denoising. Wu [8] and
Wang [9] introduced the wavelet transform method. However,
with the appropriate widow size and threshold changing with
different situations, it is difficult to obtain unified parameters
suitable for large areas.

The threshold to define Sigbeg is calculated as the mean
background noise value plus N times of noise standard deriva-
tion (std), while the result is linked closely to the background
noise information given by GLA05 (i.e., the mean and standard
derivation of noise), and the choice of noise standard derivation
coefficient N varies with each study. Chen [6] reports that the
most suitable N to predict vegetation height differs at different
sites and is not constantly affected by background noise. To
our knowledge, all existing Sigbeg determination methods rely
on predefined empirical thresholds of noises while completely
ignoring the information from the waveform distribution. There
has only been a paucity of research about Sigbeg calculation
based on GLAS waveform [8], [10].

The processes and improved methods mentioned earlier are
insufficient over rugged areas, while slope correction (SC) is
needed. Despite the difficulties in SC, efforts have been under-
taken to reduce the influence of the slope. Lefsky et al. [11]
established the relationship between canopy extraction and
waveform parameters (waveform extent, leading edge extent,
and trailing edge extent) or waveform extent and ancillary dig-
ital elevation model (DEM) [12] with multiple regression, but
the height extraction when applied at the global scale appears
problematic [4], [13]. Pang et al. [14] set up the regression be-
tween waveform parameters and crown-area-weighted height.
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While those methods are essentially site specific, the results
depend on the quantity and accuracy of field measured data.
Lee et al. [15] removed the slope effect with approximate geo-
metric correction. The correction eliminates the slope influence
of the footprint center, and the calculated result relies on the
accuracy of slope estimation.

This research is motivated by the requirement in forest land
cover mapping at the global scale [16]. In order to better
distinguish forest from shrubs and grasslands, it is desirable
to have accurate estimation of tree heights. The objective of
this research is to obtain more accurate forest canopy height
in rugged areas, particularly for slopes below 15◦ using GLAS
data. We propose a way to improve the height extraction process
and further investigate the algorithm of SC calculated from the
waveform which is suitable for randomly distributed forests.

II. STUDY AREA AND DATA

A. Study Area

The research was conducted in the Xinlin Forest and
Santa Rosa National Park (SRNP), respectively. Xinlin Forests
is the jurisdiction of Daxing’anling Prefecture, located in
Heilongjiang Province, China. The area belongs to highland
cold temperate continental monsoon climate. The forest is
dominated by coniferous forest with a small number of broad-
leaved and mixed forests scattering in the lower valleys. This
area was rarely affected by large fires and other disturbance, and
as a result, much of the forest is composed of mature trees. The
topography is widely variable, and according to the measured
data, 63.5% of the area has a slope greater than 5◦. The slope
level of each GLAS footprint was revealed by different color in
Fig. 1, and the histogram of the slope illustrated the frequency
distribution of slopes. The canopy height ranges from 6 to 19 m,
with an average of 12 m.

SRNP is located in the Guanacaste Province in the northeast-
ern Costa Rica. The park was constructed in 1971 to protect the
remaining fragments of tropical dry forest. It has ten different
habitats, widely attracting all sorts of animals, with the vegeta-
tion here including oak forest, mangrove swamp, and savannah.
The northern part of this region is relatively flat, while the slope
of the southern part could reach 61◦. The canopy height ranges
from 2.39 to 28.83 m, with an average of 16.05 m.

B. Data Collection

1) GLAS Data: NASA provides 15 GLAS data products
(GLA01–GLA15) and supplies users with the surface elevation
distribution within each footprint. The near-polar orbit satellites
covered between 86◦ N and 86◦ S globally with the altitude of
approximately 600 km. The footprint diameter is about 65 m,
varied in size and shape, and the vertical accuracy could reach
15 cm in areas with low slope [17].

The products used in this study include GLA01, GLA05,
and GLA14 from Rlease-33. For the Xinlin site, the GLAS
footprints were from the campaign of L3C (May–June 2005),
L3D (October–November 2005), L3F (May–June 2006), and
L3G (October–November 2006). For the SRNP site, only the
campaigns of L3C and L3D were available according to the

Laser Vegetation Imaging Sensor (LVIS) data acquisition time.
GLA01 provides fully received waveforms with approximate
geolocations. GLA05 offers the waveform-based range cor-
rection data, and GLA14 contains land surface altimetry with
accurate location. To get the full waveform with precise latitude
and longitude coordinates and corresponding modification data,
the fields of i_UTCTime and i_dShotTime were used to connect
these three products.

2) Field Experiment Data: National Forest Management
Inventory (NFMI) data were used to evaluate the canopy ex-
traction of the Xinlin Forest. The inventory data were gathered
during the year of 2005 and 2006 at subcompartment level, and
the time was consistent with the GLAS data. Since only average
canopy height was recorded in NFMI data, mature forests (with
the age class of V and VI) or relatively uniform growing forests
(judged by the visual interpretation of the height and shadow
of trees from Google Earth high resolution imagery) were
selected to assess the results, whose dominant height (evaluated
by GLAS) was close to the average height (collected from
inventory data).

3) LVIS Data: Airborne laser altimeter system LVIS data
over the SRNP area were provided by the LVIS team in the
Laser Remote Sensing Branch at the NASA Goddard Space
Flight Center. The LVIS data were acquired in March 2005
with a footprint size of 20 m. The LVIS Ground Elevation
product was used, recording the 25%, 50%, 75%, and 100% of
cumulative return energy relative to the total energy, and 100%
of the waveform energy (RH100) was considered as the treetop
height [18]. Since each GLAS footprint embeds 7–9 LVIS
shots, the maximum of the RH100 within each GLAS footprint
was applied to evaluate the canopy extraction computed from
GLAS data.

4) SRTM Data: The Shuttle Radar Topography Mission
(SRTM) is an international project spearheaded by the National
Geospatial-Intelligence Agency and NASA. It provides users
with high-resolution digital topographic data. Three arcsecond
(90 m) SRTM3 data from the Consortium for Spatial Informa-
tion (http://csi.cgiar.org) are available to generate slope data
for the SRNP area, and gaps have been filled by using the
TOPOGRID algorithm with auxiliary DEM [19]. The data set
was processed with the “Slope” function in Arcgis 9.3.

III. HEIGHT EXTRACTION METHOD

A. Waveform Preprocessing

1) Footprint Selection: The footprint was filtered by the
parameter i_satCorrFlg recorded in GLA14. If i_satCorrFlg
is greater than 2, it indicates waveform saturation, and the
corresponding footprint is not considered.

The amplitudes of the GLA01 waveform recorded in raw
counts were transformed into volts with a conversion table
listed in the file header of the products.

2) Confirming the Rough Range of Useful Information: The
rough range of useful information is initially determined by the
mean and std of background noise estimation obtained from
GLA05, and we searched for the first bin that exceeds the
threshold of mean +3∗ std from both sides. As a result, part
of the useless information is removed.
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Fig. 1. Study areas. (a) Xinlin Forest in Heilongjiang Province, China, and (b) SRNP in Guanacaste Province, Costa Rica. The points indicate locations and
slope level of GLAS data.
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B. Waveform Decomposition

1) Noise Reduction With SG Filter: The Savitzky–Golay
(SG) filter has been put forward as a polynomial least squares
fitting within a filter window [20]. The window selects part or
the whole of the signal and calculates the weighted average
with certain degree of polynomial weighting. The weighting is
designed to keep higher moments of the data and cut down the
bias caused by the filter. Chen [21] has indicated that this filter
deals well with narrow peaks. The heights and widths of the
waveform are quite extraordinarily preserved, at the cost of not
reducing as much noise as a low-pass filter.

Here, a global filter is utilized to further reduce the influence
of noise, and the equation of the polynomial least squares fitting
for the waveform can be expressed as follows:

Y =

∑m
i=−m CiXi

N
(1)

where Xi is the original waveform, Y is the smoothed wave-
form, N is the number of point participating calculation and
equals the size of the waveform, and m equals half of the
waveform size. Ci stands for the weighting coefficient of the ith
point within the filter window, and it satisfies the least squares
condition

m∑
i=−m

[Y (Xi −Xi)]
2 = min . (2)

Savitzky and Golay listed the coefficients, and they were
corrected by Steinier et al. [22], which can be used directly.

2) Waveform Fitting: Waveform fitting was processed by
applying the method in [23]. Two inflection points are first
calculated to determine each Gaussian waveform, and the Trust
Region Reflective algorithm is repeated to reach an effective
fitting result.

C. Sigbeg Determination

We define Sigbeg to be independent of noise estimation
and experimental trials of parameter N . In view of Gaussian
decomposition results, the Sigbeg point is identified based on
the normal cumulative distribution function φ(x), which can
completely describe the probability distribution of random vari-
able “signal time” and could find the probability P (x) whose
signal time with a normal distribution at a value is less than or
equal to a specific “signal time”

P (μ− kσ < x < μ+ kσ) = 2φ(k)− 1 (3)

φ(x) =
1√
2π

x∫

−∞

e
1
2 t

2

dt (4)

where t = (x− μ/σ), μ and σ stand for the estimated mean
and standard derivation of the first Gaussian decomposition
result. From (3) and (4), 99.73% of the signal information
within the interval of μ± 3σ would be retained [24]. As a

Fig. 2. Three-dimensional scenes of flat area and rugged area. (a) Received
waveform from flat area and the variance of ground peak. (b) Received
waveform from rugged area and the broadened variance of ground peak.

Fig. 3. Model simulation results. Trees are distributed randomly with the
height of 20 m, and the shape is an ellipsoid or cone. Waveform over 5◦, 10◦,
and 15◦ in slope could be restored to the line of 0◦. The peak of canopy and
ground merged with slope of 20◦.
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TABLE I
WAVEFORM WAS BROADENED FOR CANOPY AND GROUND IN RUGGED AREA. THE SIMULATION WAS

REPEATED 300 TIMES WITH DIFFERENT COVERAGE RANGING FROM 10% TO 90%

result, signal time T < μ− 3σ could be discarded, with little
possibility of occurrence and negligible loss of information.
Sigbeg estimated in this research could be searched as the point
where Sigbeg_3σ = μ− 3σ.

D. SC

When a laser beam interacts with a flat surface, the variance
of the received waveform is the same as that of the trans-
mitted waveform recorded in GLA01 [shown in Fig. 2(a)].
With the increase of the slope gradient, the variance of the
received waveform broadens accordingly [5]. While the laser
beam interacts with natural growing trees that are randomly
distributed, the distance between the centroid of the first and
the last peak will represent the trees’ mean height. As terrain
slope and roughness increase, the waveform distance standing
for the mean height would remain the same, while the variance
of the received waveform of trees and ground would increase in
a similar number of bins [see Fig. 2(b)] [25]. Here, the variance
of each decomposed Gaussian waveform was calculated as
three times the standard derivation. Fig. 3 and Table I show
the simulation results using the 3-D model [26], [27] which
illustrates the aforementioned statement.

Three-dimensional scenes were put into the model by as-
suming that trees are distributed randomly with a height of
20 m, and the shape of the canopy was set as an ellipsoid for
deciduous trees and as a cone for conifer trees. The model
was parameterized using simulated forest stand attributes from
[26, Table II(b)] with different descriptions for deciduous and
conifer trees. Transmitted laser was assumed in 5-ns dura-
tion of Gaussian shape, and the received laser was digitalized
in 1 ns according to the resolution of ICESat/GLAS data
(see Table I).

Fig. 3 illustrates the simulation results with a tree coverage
of 40%. It also reveals that the waveform of the canopy and
ground can be distinguished for slopes of 15◦ or less. When
the slope increases furthermore, the ground and canopy peaks
would gradually merge. When the slope increases to 20◦, it
would cause difficulty in height extraction.

Based on the aforementioned theory, the difference between
the variance of the last Gaussian waveform (stands for the
ground) and transmit waveform (recorded in GLA01) was
considered as being caused by the slope. The slope effect on
canopy extraction was reduced by obtaining the correct Sigbeg
with the method of compressing the first Gaussian waveform
(represents the canopy) from the “broadened waveform” while
keeping the centroid of each part unchanged. The Sigbeg point

Fig. 4. ICESat/GLAS waveform in the study area. In both Fig. 4(a) and (b),
the dots represent sampled waveform from GLA01. The dashed curves show
the fitting results recorded in GLA14, and the solid curves describe the result
calculated in this research. The dashed lines mark the Sigbeg_GLAS noted in
GLA14, while the solid lines mark the Sigbeg_3σ estimated with the method
presented earlier. Ground peak_GLAS and Ground peak indicate the ground
return results of GLA14 and the results using the SG filter before waveform
fitting, respectively.

could be restored from Sigbegslope correctly. The correction
was achieved with

Sigbeg = Sigbegslope − 3× (σlast_peak − σtransmit). (5)

IV. RESULTS

Waveform decomposition results in this research and the
GLA14 were shown in Fig 4. Comparing Sigbeg_3σ and
Sigbeg_GLAS of Fig. 4(a) and (b), it can be found that the
relative value of Sigbeg_3σ was fixed which describes the
signal beginning point properly, while the relative value of
Sigbeg_GLAS varied. Since Sigbeg_GLAS was calculated by
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using mean+ 4.5∗std of the noise, the result was influenced by
noise, particularly for the singular value in Fig. 4(b). The trail of
different N , which equaled 4.5 for the GLA14 of version 33, 4.5
for Simard et al. [4] and Lefsky et al. [11], 4 for Lefsky et al.
[12], and 3 for Sun et al. [25], would face similar problems,
and the relative value swung for different waveforms.

The ground peak of GLA14 was affected by noise as well,
and the last peak does not stand for ground in both Fig. 4(a)
and (b). In Fig. 4(b), the real ground corresponds to four peaks
in GLA14 results. Although the improved method of choosing
the stronger one among the last two Gaussian decomposition
peaks was suitable for Fig. 4(a), it still missed the ground for
Fig. 4(b). The fitting results with SG filtering in this research
could properly reduce the noise and preserve the shape of the
waveform. While it might still ignore some detailed informa-
tion, it is not suitable for multilayer building height extraction.

In Fig. 4(b), the slope of the footprint calculated from SRTM
data is 19.6◦, as a result the ground waveform was broadened.
The canopy height in GLA14 (H_GLA14) was 33.774 m, and
the SG filtering result without SC (H_SG) was 29.014 m. The
canopy height was overestimated owing to the influence of the
slope. After SC, the result (H_SC) was 20.324 m which was
closer to the field data, 19 m. Since the slope is relatively
large, the peaks of canopy and ground are merged which may
introduce some errors.
R2 is a frequently used measure of goodness of fit. The root-

mean-squared error (RMSE) is used to describe the differences
between values estimated (canopy height extracted in this re-
search) and values actually observed. The algorithm aforemen-
tioned was applied to 166 footprints over the Xinlin Forest area,
and 119 footprints were from the rugged area with slopes above
5◦. The goodness of fit (R2) with the aforementioned method
was 0.73, and the RMSE was 2.27 m as shown in Fig 5(a). The
regression line revealed that the results with our method fit well
with the field data. Since the inventory data were recorded in
integer numbers, it was shown relatively gathered. Owing to
the random tree distribution, the results in rugged areas were
good (see Table II). RMSE increased when the slope became
steeper. At lower than 15◦ slopes, RMSE remained relatively
stable. However, there was a significant rise when the slope
exceeded 15◦. The canopy peak would merge with the ground
peak, making it difficult to extract tree height. Seven footprints
with relatively low accuracy were marked by red stars, and they
all have greater than 15◦ slopes.

Four footprints marked with purple stars also had low ac-
curacies, and they were distributed at the border of the forest.
The SC may overestimate the height when trees gathered on the
upper portion of the footprints along the slope since the peak of
canopy waveforms would move upward with the increase of the
slope. Conversely, it may underestimate the height when trees
gather at the lower portion of the footprints along the slope.

The regression line for the SRNP area includes 39 footprints.
The goodness of fit (R2) with our method is 0.78, and the
RMSE is 3.01 m as shown in Fig 5(b). In this area, SRTM data
were used to calculate the slope within each footprint. There are
eight footprints located on slopes ranging from 5◦ to 15◦, and
their canopy heights range from 12.62 to 28.83 m. The RMSE
of these footprints is 3.75 m. In the flat area with less than

Fig. 5. Scatterplot of improved tree height extraction versus field data and
LVIS data for Xinlin area and SRNP, respectively. Dark blue represents the
95% confidence intervals for the regression line, and light blue represents the
95% prediction intervals for individual observations.

5◦ slopes, there were 29 footprints, and their RSME was only
2.34 m. This indicates that the method is also applicable to
flat areas. Two footprints with low accuracies were marked by
purple stars whose slopes were greater than 20◦.

The fitting statistics of different slope levels were represented
in Table III. Since there were no sufficient data for slopes
exceeding 15◦, the results were not shown in the table. The
second row in Table III depicted the variation of fitting statistics
when Sigbeg_3σ of improved result (in the first row) was
replaced by Sigbeg_GLAS, R2 decreased from 0.78 to 0.70,
and RMSE increased from 3.01 to 3.69 m. It can be found that
the calculation of the Sigbeg played an important role in height
extraction. As a comparison, the results of GLA14, Lefsky, and
Lee were shown in the table. Lee’s result [15] can be computed
as follows:

H_Lee = H_GLA14− 65

2
× tan(slope) (6)

and the diameter of the footprint was set to 65 m. Lefsky’s result
[3] was calculated using the equation of broadleaf.
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TABLE II
ACCURACY FOR DIFFERENT SLOPE LEVEL IN XINLIN AREA

TABLE III
COMPARISON BETWEEN RESULTS IN THIS RESEARCH AND OTHERS

As shown in Table III, the improved canopy height outper-
forms all others with the highest R2 and lowest RMSE. Lee’s
result may be influenced by the accuracy of slope and footprint
size. The global parameter of Lefsky’s equation did not perform
well for local sites as ours, and the calculated Lorey’s height
has some difference with the canopy height which can lead to
slight bias.

V. CONCLUSIONS AND DISCUSSION

A processing flow of GLAS data for canopy height extraction
over rugged terrains is presented here. Compared with existing
methods, our method produced results which are in better
agreement with validation data. The method is suitable for
canopy height extraction with GLAS data with lower than 15◦

slopes under a condition of random distribution of trees.
For clustered forests, the method would be influenced if the

footprints were located at the border of forests. The inventory
data of the Xinlin area were collected only by averaging tree
heights of mature forests or uniformly growing forests. This
may affect the accuracy of the mean dominant tree height
(evaluated by GLAS). More efforts should be made to estimate
the applicability of this method.
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