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Spectral vegetation indices can be generalized as a function of surface reflectance with respect to wavelength.
However, there is significant information on vegetation structure embedded in the anisotropic effects of the tar-
get. In this study, we describe and characterize a newvegetation index, the Anisotropic Flat Index (AFX) that cap-
tures this anisotropic scattering information and can be derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) product suite (MOD43A1).
The AFX is created by normalization of net scattering magnitude (obtained from volumetric and geometric-
optical scattering) with the isotropic scattering. The AFX summarizes the variability of basic dome-bowl aniso-
tropic reflectance patterns of the terrestrial surface. A classification scheme for BRDF typology is created based
on AFX archetypes that capture characteristic BRDF shape types. This study fully characterizes AFX in a number
of steps. First, sensitivity to random noise and observation geometries is explored by comparing the AFX with
other variables derived from fieldmeasurements that comprehensively sample the viewing hemisphere. Second,
AFX is compared with normalized difference vegetation index (NDVI) values using field measurements from
many ground campaigns, as well as global MODIS observations from EOS Land Validation Core Sites (LVCS).
Third, a BRDF typology is developed by classification of an a priori database of BRDF archetypes from field mea-
surements, and fromMODIS observations that cover the full range of vegetation types from grasslands to closed
forest (MCD43A). Fourth, the response of AFX to the parameter variability of canopy architectures and back-
ground optical properties for three vegetation types with discontinuous woody canopies is investigated through
the use of a 5-Scale BRDF model simulation. Finally, global BRDF archetypes are mapped and discussed through
the use of a global high-qualityMODIS BRDF/albedo gapfilled product (MCD43GF). The results show that the AFX
summarizes BRDF archetypes and provides additional information on vegetation structure and other anisotropic
reflectance characteristics of the land surface.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Methods that collapse spectral and (or) directional scattering data
from remote sensing into simplified index formulations are widely ac-
cepted for retrieval of land surface information. Such vegetation indices
have proven valuable in many fields of terrestrial science applications
that aim to monitor and characterize the Earth's vegetation cover.
Conventional spectral vegetation indices can bederived from surface re-
flectance using specificwavelengths (Huete, 1988;Myneni, Hall, Sellers,
& Marshak, 1995), and have been widely used as indirect measures
of various biophysical and biochemical variables, including leaf area
index (LAI) (Boegh et al., 2002; Chen & Cihlar, 1996; Haboudane,
Miller, Pattey, Zarco-Tejada, & Strachan, 2004), the fraction of
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photosynthetically active radiation absorbed by vegetation (FPAR)
(Cohen, Maiersperger, Gower, & Turner, 2003; Di Bella, Paruelo,
Becerra, Bacour, & Baret, 2004; Myneni, Ramakrishna, Nemani, &
Running, 1997) and vegetation water content (Ceccato, Tarantola,
Jacquemoud,Gregoire, & Flasse, 2001; Tucker, 1980).With conventional
spectral vegetation indices, the anisotropic effects of the target are usu-
ally treated as perturbing factors considered to be a source of uncertain-
ty in quantitative assessment. Therefore, many methods for deriving
traditional spectral vegetation indices usually utilize remote sensing ob-
servations near or normalized to nadir, and the angular variations of the
radiometric signal are frequently removed through an angular normal-
ization technique (Leroy & Roujean, 1994; Lucht, Schaaf, & Strahler,
2000). Global land cover maps have been developed mainly by using
multispectral nadir signals and the change in those multispectral
signals through an annual cycle, including data from sensors such
as the Advanced Very High Resolution Radiometer (AVHRR, Loveland
et al., 2000), MODIS (Friedl et al., 2002, 2010), SPOT-Vegetation
(Bartrlev, Belward, Erchov, & Lsaev, 2003) and the Medium Resolution
Imaging Spectrometer (MERIS, Bicheron et al., 2008). On the other
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hand, both measurement and modeling have shown that multi-angular
remote sensing can enhance the retrieval of global land surface proper-
ties, including albedo (Bicheron & Leroy, 2000; Martonchik, Pinty, &
Verstraete, 2002; Schaaf et al., 2002), land covers (DE Colstoun &
Walthall, 2006; Galvao, Roberts, Formaggio, Numata, & Breunig, 2009;
Heiskanen & Kivinen, 2008; Jiao & Li, 2012; Jiao et al., 2011) and other
key surface biophysical quantities for ecological and biological studies
(Asner, 2000; Chen, Liu, Leblanc, Lacaze, & Roujean, 2003; Chopping
et al., 2008; Gao, Schaaf, Strahler, Jin, & Li, 2003; Wang et al., 2011).

The anisotropic effects of the land surface on spectral reflectance can
be captured by angular vegetation indices (thus BRDF shape indicators).
Angular vegetation indices have been derived from the model parame-
ters of kernel-driven linear BRDF models (Gao et al., 2003; Roujean &
Lacaze, 2002). An anisotropic factor (ANIF), an anisotropic index
(ANIX) and the normalized difference between red and near infrared
(NIR) ANIX (NDAX) (Sandmeier & Deering, 1999; Sandmeier, Muller,
Hosgood, & Andreoli, 1998) have all been suggested as ways to explore
the physical mechanism of hyper-spectral BRDF effects and their rela-
tionship to land cover types. The hot-dark spot index (HDS) and the nor-
malized difference between hotspot and dark spot (NDHD) (Chen,
Menges, & Leblanc, 2005; Chen et al., 2003; Lacaze et al., 2002; Leblanc
et al., 2005) are sensitive to the angular reflectance of photosynthetically
active radiation (PAR) from sunlit and shaded leaves, and have beenused
to derive measures of foliage clumping. Roujean and Lacaze (2002) used
model parameters derived from satellite retrievals with a kernel-driven
linear BRDF model for global mapping of vegetation parameters. Gao
et al. (2003) used similar model parameters and suggested a Structural
Scattering Index (SSI). The HDS has also been used in combination
with the NDVI to generate the normalized hotspot-signature vegetation
index (NHVI) for the estimation of leaf area index (Hasegawa,
Matsuyama, Tsuzuki, & Sweda, 2010).

These angular vegetation indices have been applied in various stud-
ies that seek to retrieve additional information to enhance assessment
of land cover/dynamics (D'Entremont, Schaaf, Lucht, & Strahler, 1999;
Gao et al., 2003; Jiao et al., 2011; Roujean & Lacaze, 2002; Sandmeier
& Deering, 1999; Su, Chopping, Rango, Martonchik, & Peters, 2007)
and canopy structures (e.g., canopy density, foliage clumping factor)
(Chen et al., 2003, 2005; Gao et al., 2003; Hill, Averill, Jiao, Schaaf, &
Armston, 2008, Hill et al., 2011; Lacaze, Chen, Roujean, & Leblanc,
2002; Leblanc& Chen, 2001, Leblanc et al., 2005; Nolin, 2004). However,
to date, angular indices have not been used to derive a standard
classification of BRDF typology, i.e., to generalize BRDF archetypes
from various realistic BRDF shapes into a few BRDF-based classes for
potential ecological applications and thus building on the early work
of Strugnell and Lucht (2001) and Strugnell, Lucht, and Schaaf (2001).

The early efforts by Strugnell and Lucht (2001) and Strugnell et al.
(2001) used 68 field multi-angle measurements (all measurements
have been utilized in this study as well) to derive 25 so-called BRDF-
based classes by cross walking with ecological land cover types. A
major challenge for this method results from more complex heteroge-
neous environments within a surface type that tend to generate a
high within-class BRDF variation (e.g., areas with heterogeneous patch-
iness resulting from forest fires or deforestation, and areas with a wide
range of discontinuous tree canopy cover fractions and spatial arrange-
ments). With 13 years of MODIS BRDF model parameter data accumu-
lated, various efforts have been made to apply these model parameter
data to estimates of biophysical parameters (e.g., Landsat albedo by
Shuai, Masek, Gao, & Schaaf, 2011). A major challenge in directly using
the entire per-pixel MODIS BRDF parameter data results in conjunction
with data fromother sensors is the pixel scalemismatchbetween differ-
ent spatial resolution images. Román et al. (2013) pointed out that
spatial scale errors can produce relatively high retrieval uncertainties
in validating albedo measurements acquired from space. At present,
crosswalking a land covermapwith BRDF shapes remains a desired ap-
proach despite its attendant classification accuracy and generalization
issues. Therefore, developing a framework to extract the basic BRDF
shapes from the multiyear MODIS model parameter data remains an
important challenge. It is particularly important to determine the sensi-
tivity of these basic BRDF shapes to canopy architecture associations and
background optical properties, especially for discontinuous multilayer
vegetation canopies. Additionally, these basic BRDF shapes could be
used as a priori knowledge in estimation of biophysical parameters for
certain ecological applications.

This study provides a major advance on the work of Strugnell and
Lucht (2001) and Strugnell et al. (2001) by combining MODIS BRDF
model parameter data into a more generic Anisotropic Flat Index
(AFX) based on kernel-driven linear BRDF model theory. The work by
Strugnell et al. (2001) was a quite rudimentary attempt to develop an
a priori BRDF database, and is actually no longer used by the MODIS
algorithm which has access to considerable NASA processing power
and the luxury of using the most recent BRDF retrieval for that pixel
directly. But for applications which do not have access to such resource,
a generalized anisotropy flat index provides some ancillary information.
The study a) explores the general characteristics of AFX in relation to the
anisotropic reflectance patterns of land surface; b) investigates the un-
certainty and sensitivity of AFX to observation geometries and random
noise; c) analyzes the new information provided by the AFX in compar-
isonwith a traditional spectral vegetation index forMODIS observations
and explores its response to canopy architectures and background opti-
cal properties for three vegetation types with discontinuous woody
canopies through use of a 5-Scale BRDFmodel simulation; d) generates
an a priori database of BRDF archetypes based on AFX; and e) maps
BRDF archetypes for the globe and initially compares these to MODIS
International Geosphere-Biosphere Program (IGBP) land cover classes.

2. Methods

2.1. Theoretical basis

2.1.1. Ross–Li model
The Ross–Li model is a further development of kernel-driven

Roujean BRDFmodel (Roujean, Leroy, & Deschamps, 1992) that is linear
combination of three basic scattering components: isotropic scattering,
volume scattering and geometric-optical surface scattering. This model
adopted a general form (Lucht et al., 2000; Roujean et al., 1992;Wanner,
Li, & Strahler, 1995):

R θv; θs;Δϕλð Þ ¼ f iso λð Þ þ f vol λð ÞKvol θv; θs;Δϕð Þ þ f geo λð ÞKgeo θv; θs;Δϕð Þ
ð1Þ

where fiso(λ), fvol(λ) and fgeo(λ) are the spectrally dependentmodel pa-
rameters. Kvol(θv,θs,Δϕ) and Kgeo(θv,θs,Δϕ) are kernel functions of view
zenith θv, illumination zenith θs and relative azimuth Δϕ, providing
shapes for volumetric scattering and geometric-optical scattering
BRDFs; fiso(λ) is a spectral constant for isotropic scattering that deter-
mines optical properties in relation to reflectance and transmittance of
vegetation foliage and background; fvol(λ) and fgeo(λ) are spectral
constants that weight the two BRDFs; R(θv,θs,Δϕλ) is bidirectional
reflectance distribution function in waveband λ.

The Ross–Li model was originally designed to include a series of
kernels for various land cover types in MODIS (Wanner et al., 1995).
Volumetric scattering kernels include RossThick kernel for a big leaf
area index (LAI ≫ 1) and RossThin kernel for a small LAI (LAI ≪ 1),
which were originally developed by (Roujean et al., 1992), based on
an assumption of a single-scattering approximation of the radiative
transfer (RT) theory by Ross (1981). These two volumetric kernels
take the reciprocal form, i.e., the sunlit component is simply assumed
to vary as reciprocal of cosine of view zenith (Roujean et al., 1992;
Wanner et al., 1995). Geometric-optical kernels include the LiSparse,
the LiDense (Wanner et al., 1995) kernels for discrete clumping vegeta-
tion crown with low and high density, and the LiTransit (Gao, Li,
Strahler, & Schaaf, 2000; Li, Gao, Chen, & Strahler, 1999) kernel for



170 Z. Jiao et al. / Remote Sensing of Environment 141 (2014) 168–187
vegetation crowns with densities varying from sparse to dense at a
given threshold of viewing and solar geometry. These geometric-
optical kernels can also take a reciprocal form by empirically adding a
cosine of the sunlit component (Gao et al., 2000; Li et al., 1999; Lucht
et al., 2000; Roujean et al., 1992; Wanner et al., 1995). The current
operationalMODIS BRDF algorithmhas adopted theRossThick–LiSparse
Reciprocal (RTLSR) model for the routineMODIS BRDF/Albedo product.
Thismodel has also been adopted for theVIIRS (Visible/Infrared Imager/
Radiometer Suite) Albedo and Bidirectional Reflectance Climate Data
Records on board the platforms of the Suomi National Polar-orbiting
Partnership (NPP) for dark surfaces (e.g., vegetation).

2.1.2. Relationship of AFX to model parameters
Given the pre-determined structure parameters in the kernel func-

tion, these kernels are just trigonometric functions regarding viewing
and solar geometries and the relative azimuthal angles between them;
therefore, they can be pre-calculated for given viewing and solar geom-
etry or directional–hemispherical integral or bi-hemisphere integral.
An integral of the viewing hemisphere for these kernels results in
directional–hemispherical integral value, followed by further integra-
tion of the solar hemisphere to generate a bi-hemispherical integral
value, usually marked as Hker (Lucht et al., 2000). Therefore, for a
given kernel, Hker is a constant value in relation to a certain scattering
type.

For a given pixel, if sufficient multiangular observations have been
accumulated to adequately sample the viewing hemisphere, Eq. (1)
can be inverted for three model parameters as spectral constants, and
then integration over the both viewing and illumination hemisphere
can be accomplished to acquire the bi-hemispherical reflectance,
i.e., white sky albedo (WSA) in MODIS BRDF/Albedo product (Lucht
et al., 2000; Schaaf et al., 2002)

WSA λð Þ ¼ f iso λð Þ þ f vol λð ÞHker vol þ f geo λð ÞHker geo: ð2Þ

By simply normalizing Eq. (2) on both sides by the isotropic param-
eter to remove the spectral reflectance amplitude, the new angular
index AFX can be generated with Eq. (3)

WSA λð Þ
f iso λð Þ ¼ AFX ¼ 1þ f vol λð Þ

f iso λð Þ � Hker vol þ
f geo λð Þ
f iso λð Þ � Hker geo: ð3Þ

Again, Hker_vol and Hker_geo are the predetermined bi-hemispherical
integral values for the volumetric and geometric-optical kernels. For
the RTLSR model, HRossThick = 0.189184 and HLiSparseR = −1.377622.
The parameters, fgeo (λ) and fvol (λ) are the two spectral constants
that weight BRDF shapes, while fiso (λ) is a spectral constant for isotro-
pic scattering that determines the spectral reflectance amplitude. Here,
we define WSA(λ)/fiso (λ) as the new Anisotropic Flat Index (AFX) to
reflect these BRDF effects. Therefore, Eq. (3) combines the model
parameters with the bi-hemispherical kernel integral values into a
more general index (AFX) that is related to the variability of the BRDF
shapes of land surfaces.

2.1.3. Relationship of AFX to anisotropic reflectance pattern
It is important to understand the behavior of the estimated AFX

under the anisotropic reflectance conditions of different vegetation
covers. Since the AFX is derived from a kernel-driven linear BRDF
model, a simple review of the general considerations behind the
kernel-driven BRDF models is helpful in further understanding the
AFX. The kernel-driven BRDF model have followed the central assump-
tion that, for a given heterogeneous land surface, “the surface reflec-
tance may be viewed as a combination of two different component
representative of two different bidirectional signatures” (Roujean
et al., 1992). One component is thematerial surface scattering consider-
ing the geometrical structure and shadowing effects, and the other is
volume scattering represented by randomly located facets which are
absorbing and scattering radiation. For discrete tree crowns, a simple
understanding of these two components with regard to the within-
crown and between-crown scatterings is as predominantly volume
and surface scattering components that are respectively modeled with
a geometric-optical and radiative-transfer approach that describes
randomly-distributed discrete objects comprising a turbid medium
(Li, Strahler, &Woodcock, 1995). Although these two scattering compo-
nents are not necessarily orthogonal, their linear combination has
shown a surprising capability to determine the surface anisotropic re-
flectances of the primary land surfaces with high accuracy (Hu, Lucht,
Li, & Strahler, 1997; Lucht & Lewis, 2000; Maignan, Breon, & Lacaze,
2004; Roujean et al., 1992; Schaaf et al., 2002; Wanner et al., 1995). To
further examine the characteristics of the AFX, we go back to Eq. (3).

Eq. (3) has same form as Eq. (1) that has been normalized by the iso-
tropic parameter. The bi-hemispherical integral values of Ross kernel
series (Hker_vol) represent positive signs,while bi-hemispherical integral
values of Li kernel series (Hker_geo) represent negative signs. In the oper-
ational MODIS BRDF products, negative model parameters are not
allowed through the use of a constraining technique, which forces a
three-parameter model into a two-parameter model or simply reverts
the retrieval to a poorer backup model (Jin et al., 2003; Roman et al.,
2011; Schaaf et al., 2002). Such a constraint makes the AFX values
vary around unity. Therefore, for normalized volume and surface
scattering components, if one component counteracts another, then
AFX = 1.0; if the volume scattering component is dominant, then
AFX N 1.0; otherwise, AFX b 1.0 indicates that the surface scattering
component is dominant.

Furthermore, AFX is related to the variation of the basic dome or
bowl BRDF shapes in terms of its values around unity. To explain this,
we take the operational RTLSR algorithm for example. Fig. 1 shows
3-D shapes for RossThick and LiSparseR kernels at four given solar ze-
nith angles (15°, 30°, 45° and 60°). The Blue-Green-Red colors indicate
the low-to-high transition of kernel values and distinctly reflect the
dome-bowl variability of kernel shapes at different illumination geom-
etry. Fig. 1 shows that the volumetric scattering kernels present typical
upturned bowl shapes,while the geometric-optical kernels present typ-
ical dome shapes. Realistic BRDF shapes are generated by weighting
these two kinds of generalized kernel shapes by model parameters,
and therefore we can infer that the true BRDF shapes as derived
by the RTLSR model would bear resemblance to various dome-bowl
shapes. A volume scattering-dominated component (AFX N 1.0)
would represent the somewhat more bowl-shaped BRDF curves, while
a surface scattering-dominated component (AFX b 1.0) would capture
the somewhat more dome-shaped BRDF curves. An AFX = 1.0 would
indicate that the volumetric scattering counteracts the geometric-
optical scattering and produces a relatively Lambertian surface. This
characteristic enables the AFX to support a BRDF-based classification
scheme for BRDF typology.

2.2. Assessment of AFX with field measurements

Initially, the AFX is assessed using ground-based measurements
that provide accurate land surface information and thus are helpful in
understanding the AFX at spatial resolutions of a few meters.

2.2.1. Field BRDF data and processing
Sixty-nine ground measurements were accumulated from different

sources (Deering, Eck, & Banerjee, 1999, 1992; Deering, Middleton, &
Eck, 1994, Deering et al., 1992; Irons, Campbell, Norman, Graham, &
Kovalick, 1992; Kimes, 1983; Kimes et al., 1985; Ranson, Biehl, &
Bauer, 1985; Vierling, Deering, & Eck, 1997) and cover a range of land
cover types including barren soilwith different roughness, sparsely veg-
etated grass, grass-like or broadleaf crops, and forests. Airborne polari-
zation and directionality of the Earth's reflectances (POLDER, Leroy &
Breon, 1996) and cloud absorption radiometer (CAR) data (Tsay, King,
Arnold, & Li, 1998) are also included in this collection. Note that CAR/



Fig. 1. RossThick (top) and LiSparseR (bottom) kernels with solar zenith angles at 15°, 30°, 45° and 60°.
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forest data has a very fine viewing zenith angular resolution (1°) with
viewing zenith angles ranging from 0° to 90°, and azimuth angular res-
olution ranging from 1° to 360°. However, there is only one solar zenith
angle position (56.67°) and a strong forward scattering peak occurs
from 70° to 90° in the original data, possibly caused by smoke aerosols
(Tsay et al., 1998). Because current model kernel combinations do not
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characterize the forward scattering peaks well, these data are corrected
by removing the measurements beyond 70° of viewing zenith angle.
Among these 69 data sets, 27 were previously used for algorithm tests
by Hu et al. (1997) and 68 data sets were used to develop 25 BRDF ar-
chetypes for a backup algorithm by Strugnell and Lucht (2001) and
Strugnell et al. (2001) for the early operational MODIS BRDF and albedo
product (the current backup algorithm relies on the most recent high
quality retrieval in an updated pixel-by-pixel global BRDF database).
Details for every data set are not provided here, and readers are referred
to the individual studies cited for more details.

To process the ground measurements, the same inversion strategy
that is used for the operationalMODIS BRDF/Albedo products is adopted
here, resulting in the model inversions that retrieve the parameters of
the linear models based on a least-squares method (Lucht et al.,
2000). Two internal quality control techniques are used to assess the
uncertainty in the model-inversion. The root mean squared error
(RMSE) describes the deviation of the RTLSR model-fits from clear ob-
servations (Lucht et al., 2000) and is a band-dependent function
weighted by the observation quality. Larger RMSE values indicate
higher uncertainty in the model fit. The weight of determination
(WoD), also designated as the noise amplification factor, describes
whether the random noise is amplified or not when the multiangle in-
puts are processed with the kernel-driven linearmodels under the con-
ditions of limited and varying angular sampling (Lucht & Lewis, 2000).
For simplification, only the WoD of the WSA (WoD_WSA) is calculated
in this study.

As mentioned above, a constraining technique is used to limit nega-
tive model parameters. This is done by constraining negative parame-
ters to zero while re-fitting a two-parameter model to meet with the
least-squares error function by iteration methods. This constraining
technique has been adopted in the operational RTLSR algorithm
(Jin et al., 2003; Schaaf et al., 2002). With these three quality assurance
techniques, the RTLSR model is inverted to obtain model parameters,
and then the AFX and other variables including nadir BRDF-adjusted
reflectance (NBAR), NDVI andWSA are calculated. The NDVI was calcu-
latedwith theNBAR at the average solar zenith angle for each data set to
limit the angular effects on the target. Examination of the RMSE and
WoD-WSA showed that RMSE had a maximum value of 0.0398 for a
desert site (Deering et al., 1992) in red band and a maximum value of
0.0622 for an aspen woodland site (Deering et al., 1992) in NIR band
(both b0.1), indicating that all fits by RTLSR algorithm, in general, per-
formed well (Jin et al., 2003; Shuai, Schaaf, Strahler, Liu, & Jiao, 2008).
TheWoD-WSA less than 1.0 indicates that the randomnoise from the ob-
servations are suppressed by the RTLSR algorithm for the 69 ground
measurements (Lucht & Lewis, 2000).

2.2.2. Analysis of AFX Sensitivity to random noise and observation
geometries

The sensitivity of AFX to observation geometry and random noise
was compared with three model parameters (fgeo, fvol and fiso), white
sky albedo (WSA) and the NDVI. First the mean, standard deviation
and coefficient of variation (CoV) were calculated for the 69 ground
measurements in the red and NIR bands. The CoV is a normalized mea-
sure of the dispersion of a probability distribution and is defined as the
ratio of the standard deviation to the mean. Then the sensitivity of the
AFX to view and solar geometries was examined for one ground mea-
surement. Finally, the AFXwas assessed for sensitivity to contamination
by random simulated noise.

The sensitivity of the AFX to view and solar geometries was exam-
ined using a field dataset from a grassland site at the Konza Prairie, KS.
The measurements were collected by Deering et al. (1992) using the
Portable Apparatus for Rapid Acquisition of Bidirectional Observations
of the Land and Atmosphere (PARABOLA) instrument on June 4, 1987
in a ground campaign for the First International Satellite Land Surface
Climatology Project (ISLSCP) Field Experiment (FIFE). The data set is
comprised of 925 directional observations and 9 solar zenith angles
ranging from 18° to 68°. LAI was 2.2; mean canopy height was 35 cm;
canopy closure was greater than 90%. The prairie grass site was burned
in the spring of the previous year to remove litter. The data set was split
into ten random equal-sized subsets that maintained the observation
distribution of the entire data set in each subset. Three model parame-
ters and WSA, NDVI and AFX were retrieved for each subset and for
the whole data set using the RTLSR algorithm. Average relative differ-
ence (ARD) for 10 subsets relative to the whole data set was calculated
for all variables.

Sensitivity of AFX to random noise was examined using the same
data set (Deering et al., 1992) in four azimuthal planes including princi-
pal plane (PP), cross-principal plane (CP), 60° clockwise plane (+60),
and 60° counter clockwise plane (−60). The number of the observa-
tions in the four planes was respectively 128, 110, 178 and 141. Low
values for the WoD (0.00797, 0.01106, 0.00574 and 0.00769) indicated
that the spatial distribution of observations along each plane was suffi-
cient to fully capture the surface anisotropy. Random Gaussian noise
was generated to contaminate a portion of observations to account for
an increasing probability density of Gaussian noise (1/8 and 1/4). The
relative difference between each subset and the whole dataset without
the noise contamination in that plane was calculated.

2.2.3. Application of AFX to BRDF typology
In theory, the AFX should be able to support a BRDF-based classifica-

tion scheme for BRDF typology because the AFX reflects the variability
of the basic dome-bowl BRDF shapes. The following procedure was
adopted to develop a set of AFX-based BRDF archetypes.

(1) The red and NIR AFX values were classified separately to gener-
ate different BRDF classes by using the ISODATA (Iterative Self
organizing data Analysis technique) Clustering Algorithm.

(2) AFX values were related to model parameters by establishing a
look-up table in terms of Eq. (3).

(3) Within-classmodel parameters (respectively for fiso, fvol and fgeo)
were averaged to represent archetypal parameters for that class.

(4) Model parameters were then input to the RTLSR algorithm to
reconstruct characteristic BRDF shapes.

The ISODATA clustering algorithm uses the minimum spectral dis-
tance formula to form clusters, beginning with arbitrary cluster means
or means of an existing signature set. Each time the clustering repeats
and the means of these clusters are shifted. The new cluster means are
used for the next iteration until a given iteration limit or convergence.

To determine how many BRDF archetypes are appropriate for these
69 data sets, the variation of the fit-RMSEs was examined in relation to
the number of BRDF archetypes for each of the data sets. First the
ISODATA clustering algorithm was used to classify all the AFX of these
69 field measurements into 2–8 BRDF classes for red and NIR bands as
indicated above. Then the BRDF archetypeswere compared to the corre-
sponding within-class observations to acquire within-class fit-RMSEs.
Finally, a mean of these fit-RMSEs was calculated for each case.

2.3. Assessment of AFX with satellite data and model simulations

2.3.1. Satellite data from MODIS
The next logical stepwas to examineAFX over awide range of global

land cover types. High-quality remotely-sensed MODIS data sets from
the EOS LVCS which were intended as a focus for land product valida-
tionwere used. For the purpose of this study, 26 EOS LVCSwere selected
to represent a wide variety of vegetation types across global biomes for
the year 2004. Although the results from a single year were used in this
study, similar results were found when using as many as 5 years. These
land cover types were then grouped into broad ecological land cover
classes according to a herbaceous-shrub–forest vegetation transition
for examination of within-class BRDF variations. These 500 m MODIS
BRDF products were used to derive BRDF archetypes that represent
a global sample of variation over a one-year cycle. The distribution



Fig. 2. Distributions of 26 EOS land validation core sites (LVCS) used in this study displayed over the MODIS IGBP land cover classes.
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of these 26 EOS LVCS is shown in Fig. 2 and the descriptions of their
characteristics are given in Table 1.

The global gap-filled MODIS BRDF/albedo product (in particular the
solar zenith angle (SZA)-extended MODIS/Terra + Aqua 30 arc second
Global Gap-Filled, Snow-FreeMCD43A1 V005 BRDF Parameters Product
(MCD43GF)) was used to generate global maps of the BRDF archetypes.
TheMCD43GF products are global data sets of spatially complete BRDFs
computed at sevenMODIS bands and three broad bands for 46 retrieval
periods per year and are primarily based on the 30 arc second gap-filled
snow-free BRDF parameters products (MCD43D) that are, in return, the
reprojected average of the underlying 500 m MODIS/Terra + Aqua
BRDF/albedo product (MCD43A1), representing the majority quality
associated with the underlying data. The MCD43A data product results
Table 1
26 EOS land validation core sites and a broad herbaceous-shrub-forest class. (Mixed land cove

LC Num Core sites DAAC code Biome

Herbaceous 1 USDA/BARC Usdaars Broadleaf cropland
2 Barton Bendish Bartonbe Broadleaf cropland
3 Bondville Bondvill Broadleaf cropland
4 Maricopa Maricopa Broadleaf cropland
5 Lindenberg Lindenberg Cropland (agricultur
6 Mead Mead Cropland (corn/soy)
7 ARM/CART Armcart Grassland/cereal
8 Mandalgobi Mandalgo Grassland/cereal
9 Sevilleta Sevillet Grassland/cereal
10 Uardry Uardry Grassland/cereal

Mixed 11 Barrow Barrow Tundra
12 Jornada Jornada Shrubland/woodland
13 Sky Oaks Skyoaks Shrubland/chaparral
14 Mongu Mongu Shrubland/woodland
15 Skukuza Skukuza Shrubland/woodland

Forest 16 NSA Boreasn Needleleaf forest
17 Wisc/Cheq Parkfall Needleleaf forest
18 Krasnoyarsk Krasnoya Needleleaf Forest
19 Howland Howland Needleleaf forest
20 Cascades Cascades Needleleaf forest (m
21 SSA Boreass Boreal forest
22 Walker Branch Walkerbr Broadleaf forest
23 Chang Baishan Changbai Forest (mixed)
24 Harvard Forest Harvard Broadleaf forest
25 Ji-Paraná Jiparana Broadleaf forest
26 Tapajós Tapajos Broadleaf forest
from a retrieval attempt every 8 days based on a 16 day period.
The quality status of each pixel retrieval can be found in the QA (quality
assurance) maps.

TheMODIS International Geosphere-Biosphere Program(IGBP) clas-
sification scheme (Friedl et al., 2002, 2010) was used to evaluate global
AFX archetype map produced by high-quality MODIS MCD43GF data.
The IGBP classification scheme separates land cover into 16 classes
(Fig. 2). The phenology of these 26 EOS LVCS in year 2004 was charac-
terized in terms of their NDVI characteristics, i.e., dormancy, green-up,
maturity and senescence based on the approach of Zhang et al.
(2003). Consideration of canopy state in certain biomes and hemi-
spheres was very important for the analysis. For example, characteriza-
tion of AFX archetypes was based on a standard tree canopy state of
r represents sites with woody and herbaceous components).

Latitude/longitude Line/sample State, country

39.03,−76.85 232.30/72.10 MD, USA
52.618, 0.524 1771.18/75.35 England, UK
40.0, −88.29 2399.50/566.89 IL, USA
33.07,−111.97 1662.70/1479.03 AZ, USA

e) 52.17, 14.12 1878.70/2077.96 Germany
41.1651, −96.469 2119.88/1769.70 Mead, NE
36.64,−97.50 805.90/423.17 OK, USA
45.995, 106.327 960.70/927.55 Dundgovi, Mongolia
34.344, −106.671 1356.94/461.46 NM, USA
−34.39, 145.30 1053.10/2376.07 Australia
71.281, −156.612 2092.06/2336.9 Alaska, USA
32.60,−106.86 1775.5/2393.0 NM, USA
33.377, −116.623 1589.02/626.31 USA
−15.438, 23.253 1304.62/578.82 WesternProvince, Zambia
−25.02, 31.497 1204.30/2048.99 Northern Prov., RSA
55.87,−98.48 990.70/1138.07 Manitoba, Canada
45.946, −90.272 972.46/1734.86 WI, USA
57.27, 91.60 654.70/2286.13 Russia
45.20,−68.73 1151.50/376.88 ME, USA

oist) 44.24,−122.18 1381.90/591.17 OR, USA
53.65,−105.32 1523.50/1816.35 Saskatchewan, Canada
35.958, −84.287 969.58/424.88 TN, USA
42.403,128.096 1822.90/1100.92 Jilin, China
42.539, −72.178 1790.07/1636.04 MA, USA
−10.08,−61.93 18.70/2165.79 Rondonia, Brazil
−2.857,−54.959 685.18/1225.18 Para, Brazil
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leaf-on or leaf-off and the timing of these states varies globally both be-
tween andwithin biomes. Trees in Australian savannas are largely ever-
green, but many in African savannas trees lose their leaves to avoid the
dry season drought. Hence the phenology data was used to align the
canopy conditions for archetype characterization.

2.3.2. Response of AFX to canopy architectures and background
The 5-Scale BRDF model was used to examine the sensitivity of

AFX and BRDF archetypes to canopy architectures and background
optical properties for three vegetation types with discontinuous woody
canopies. The 5-Scale BRDF model is a radiative transfer model that sim-
ulates the BRDF in terms of structural and biochemical properties of the
vegetation (Chen& Leblanc, 1997). Themodel includes amultiple scatter-
ing scheme that includes all orders of scattering among canopy geometri-
cal structures and has been reported as a reliable simulation tool at awide
range of wavelengths including the near infrared (Chen & Leblanc, 2001;
Chen et al., 2005). This simulation includes three cover types (i.e., Conifer,
Savanna and Shrub) with very different canopy architectures.

The main input parameters to the 5-Scale BRDF model and
their values are given in Table 2. Two geometric representations for
the envelope of the tree crown are used. Needleleaf species (Conifer)
are modeled using a combination of cylinders and cones (Chen &
Leblanc, 1997), while the broadleaved species (Savanna and Shrub)
are modeled using full ellipsoids (Li & Strahler, 1992; Strahler & Jupp,
1990). Several paperswere consulted for selecting structural parameter
values (Chen & Cihlar, 1996; He, Chen, Pisek, Schaaf, & Strahler, 2012;
Li & Strahler, 1992; Ryu et al., 2010). The optical reflectance properties
of needles/leaves are adopted for the red (0.06) and NIR (0.6) bands.
Three background reflectivity values are adopted to represent dark
(0.05), gray (0.25) and bright (0.5) soils in the two spectral bands. The
tree crown radius (R) is limited by an equation in terms of stem density
(ρ) and the vertically projected crown coverage (C), i.e., 10−4πR2ρ ≤ ∁.

2.3.3. Derivation of BRDF archetypes from MODIS data
An a priori database of BRDF archetypes was established for the four

phenological seasons of 2004 for all 7 MODIS bands by using theMODIS
BRDF products over the 26 EOS LVCS. To determine how many AFX ar-
chetypes were appropriate for these EOS Sites, the procedure described
in Section 2.2.3 above for the field data was also applied to the MODIS
data. BRDF sensitivity was retained by constructing a sampling scheme
for the whole model surface, based on anisotropic measurements at
fixed intervals (Sandmeier & Deering, 1999), i.e., azimuth angle interval
≤30°, zenith angle interval ≤15°. Thus for the MODIS data, the model
surface was sampled at intervals of 30° in azimuth angle, 5° in view
zenith angle, and for three solar zenith angles (30°, 45° and 60°), within
the 70° view and solar geometries recommended as the maximum
angles for the RTLSR algorithm (Schaaf, Liu, Gao, & Strahler, 2011).

3. Results

3.1. Analysis of the AFX sensitivity to random noises and observation
geometries

Comparison of the CoV among model parameters from the 69 data
sets (WSA, NDVI andAFX) shows that AFX appears to be themost stable
parameter. The CoV showed a higher level of variation for the model
Table 2
Input parameters to 5-Scale and their values used in modeling.

Cover type Tree envelop shape Tree clumping Shape parameter (m

Number Nyman Stick height C

Conifer Cone/cylinder 30 4 0.5
Savanna Full ellipsoid 5 4 2 1
Shrub Full ellipsoid 30 4 0
parameters (Table 3). The variation was lower for the NIR band than
for the red band for all variables. Among the three model parameters,
fiso seems to be most stable since fiso is representative of spectral reflec-
tance at nadir-view and nadir-Sun and is mainly determined by the
optical properties of land surface (Roujean et al., 1992).

Model parameters were more sensitive to the variation of view and
solar geometries thanWSA, NDVI or AFX with fgeo N fvol N fiso (Table 3).
The AFX however exhibits similar sensitivity to the WSA and NDVI. All
variables weremore sensitive to different viewing and solar geometries
in the red band than in the NIR band.

All variables showed some sensitivity to an increasing proportion of
contaminated observations (Table 3). The BRDF principal plane exhibits
less sensitivity to an increasing proportion of noise than other planes
(except for NDVI). Noise sensitivity did not differ greatly between the
red and NIR bands. Model parameters were more sensitive to random
Gaussian noises than other variables, with fiso the least sensitive. The
sensitivity of fvol and fgeo to noise contamination may arise from the
fact that volumetric scattering and geometric-optical kernels are not
necessarily orthogonal (Lucht et al., 2000). The invalid values (null)
for fgeo_nir in cross-principal plane are caused by the constraining
technique.

3.2. Analysis of the additional information contained in the AFX

The NDVI may be the most widely used spectral vegetation index
that was mainly used for land cover classification in early research
(e.g., Defries & Townshend, 1994; Hansen, Defries, & Townshend,
2000). Although theNDVIwas not designed to consider angular scatter-
ing, several studies (e.g., Bréon & Vermote, 2012; Vermote, Justice, &
Breon, 2009) have recently suggested that NDVI is linearly related to in-
dividual MODIS BRDF parameter (fvol or fgeo) and therefore can be used
to develop a general approach for MODIS BRDF correction. To explore
this assumption, a comparison of AFX with NDVI was made in order to
distinguish the structural scattering information captured by AFX that
is independent of the reflectance magnitude response captured by
NDVI, as well as explore the difference in using the indices rather than
directly using individual model parameters. Comparison of the AFX
andNDVI values (Fig. 3) for the 69 field sitemeasurements demonstrat-
ed that for any given NDVI observation AFX values exhibit a large dy-
namic range. The correlation between AFX and NDVI was significant
but modest (Rred = 0.595 and RNIR = 0.476). Thus this range in AFX
values reflects the intrinsic differences in both the spectral and direc-
tional sensitivities to different land surface properties. Therefore, for a
specific NDVI value, AFX will exhibit a range of values that reflect
additional differences related to canopy physiognomy and structure
(e.g., canopy height, size, within-crown gaps vs. between-crown gaps,
and background vs. foliage contributions).

TheNDVI-axis (Fig. 3) is divided into fourmajor regions according to
the stratification of the NDVI response to broad scene components
(Holben, 1986): soil (0.025–0.09), light green-leaf vegetation (0.09–
0.14), medium green-leaf vegetation (0.14–0.50) and dense green-leaf
vegetation (N0.50). If the AFX axis is similarly divided into four major
zones based on strong bowl shapes (AFX N 1.11/1.12), slight bowl
shapes (AFX 0.96/0.98–1.11/1.12), slight dome shapes (AFX 0.78/
0.79–0.96/0.98) and strong dome shapes (AFX b 0.78/0.79) according
to the BRDF classes in Section 3.3 below, then the important variation
) Leaf area
index

Foliage
clumping

Vertical crown
coverage (%)

rown height Crown radius low high

6.5 0.75 2.5 0.65 0 60
0 3.0 1.5 0.70 0 60
1 0.5 1.5 0.75 0 60



Table 3
Analysis of AFX sensitivity, response to geometry and response to random noise relative to other variables.

fiso_red fvol_red fgeo_red fiso_NIR fvol_NIR fgeo_NIR WSA red WSAnir NDVI AFX red AFXnir

Sensitivity
Mean 0.106 0.050 0.016 0.313 0.170 0.029 0.094 0.305 0.552 0.978 0.980
Std 0.097 0.041 0.021 0.100 0.107 0.032 0.080 0.108 0.271 0.205 0.156
CoV 0.912 0.819 1.337 0.319 0.627 1.094 0.851 0.353 0.491 0.209 0.159

Geometry
Mean Sub01–10 0.100 0.046 0.009 0.273 0.158 0.008 0.097 0.291 0.485 0.967 1.068
ARD(%) 3.850 12.01 29.75 1.610 5.390 24.39 1.620 0.840 1.140 3.620 1.180

Random noise
PP (1/8) 2.45 8.019 12.47 2.63 8.051 30.84 1.52 1.54 1.02 1.18 1.35
PP (1/4) 2.51 10.40 11.69 2.59 11.25 31.25 1.82 1.74 1.48 1.32 1.57
CP(1/8) 3.84 21.34 38.88 4.49 11.48 Null 1.49 1.58 0.16 2.92 3.42
CP(1/4) 11.0 59.64 89.55 12.1 34.62 Null 5.60 5.67 0.42 7.17 7.97
+60(1/8) 1.24 11.67 12.68 1.28 6.95 39.00 0.85 0.89 0.25 1.10 1.17
+60(1/4) 6.49 36.57 50.88 7.61 21.48 160.1 2.28 2.19 0.44 4.49 5.56
−60(1/8) 3.16 9.52 16.14 3.81 7.95 138.8 1.14 1.04 0.22 2.24 2.94
−60(1/4) 6.44 26.50 30.52 7.96 21.27 266.6 3.19 3.17 0.47 4.00 5.18
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associated with high and low NDVI is highlighted. There is a wide vari-
ation in red AFX above NDVI of 0.67, and significant variation in NIR AFX
below NDVI of 0.22.

3.3. Application of AFX to BRDF typology for the 69 field sites

The variability in fit-RMSE against number of BRDF archetypes is
shown in Fig. 4. The fit-RMSE reaches a stable asymptote at four BRDF
archetypal shapes and accounts for N95% of totalfit-RMSE (right subplot
of Fig. 4), with RMSEs reduced to ~0.019 in red band and ~0.045 in NIR
band. The 69 BRDF shapes in the principal plane (PP) in the red and NIR
bands with each color representing the same BRDF classes are shown in
Fig. 5 (top).

These BRDF shapes don't present distinctly regular variability
because of the difference in spectral reflectance amplitude of land
covers as determined by the model isotropic parameters (fiso). This
spectral reflectance difference is removed by normalizing the BRDF
shapes by multiplying them by a scale factor K = α/fiso. This applies
the samemethod as used for AFX definition (therefore such normaliza-
tion represents an “AFX transform” for both model parameters and
reflectance). Here, α is an adjustment factor to limit the range of the
adjusted shapes. We take α = 0.5 to force most shapes into 0–1.0
range in this study. An α = 1 is used to retain original AFX values. The
69 normalized BRDF shapes in red and NIR bands are shown in Fig. 5
(bottom) with the same color codes. The normalized shapes now
represent a gradient of dome-to-bowl variability, indicating a distinct
Fig. 3. The scatter plots of the NDVI vs. AFX fo
transition from geometric-optical scattering to volumetric scattering
compared with their original form. The four BRDF archetypes for red
and NIR together with within-class BRDF variation are qualitatively
demonstrated in Fig. 6 (solid curves represent BRDF archetypes and
dashed curves represent the variation of within-class BRDF shapes
around the BRDF archetypes). These BRDF archetypes (bold solid
curves) show a change from dome to bowl shapes that corresponds
with the AFX values changing from less-than-unity to greater-than-
unity. The corresponding AFX values for both the red and NIR represent
unique BRDF types.

The original and normalized model parameter values and AFX
threshold values for the four archetypes as derived from the 69
field sites are provided (Table 4). Table 4 also quantifies the
within-archetype variation by calculating the standard deviation of
AFX. The wider dynamic range of AFX in the red band represents
more variability in BRDF shapes. Within-archetype standard devia-
tions are larger for the low and high values of the AFX archetypes,
since these archetypes include the more extreme AFX values associ-
ated with extreme dome and bowl shapes. In general, the maximum
within-archetype fit-RMSE retains ~0.025 in red and ~0.055 in NIR
for individual BRDF class that has the highest within-class variances.
This indicates that the maximumwithin-archetype fit-RMSE is fairly
stable and the information content of the extreme types is generally
preserved in the AFX-classification process with the ISODATA
algorithm. The normalized model parameters illustrate regular vari-
ability, i.e., for a constant fiso', increasing fvol' implies increasing
r 69 measurements in red and NIR bands.

image of Fig.�3


Fig. 4. Variability in fit-RMSE against the number of BRDF archetypes in red (left) and NIR (right) bands.
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weights of volumetric scattering, and decreasing fgeo' implies
decreasing weights of geometric-optical scattering, matching the
variability of dome-to-bowl BRDF shapes.

To relate the AFX archetypes to actual vegetation and land surface
characteristics, the archetype classes are described in terms of the avail-
able field site descriptions, fractional vegetation cover (FVC) if known or
estimated for unknown data using an algorithm (Roujean & Lacaze,
2002), and a conceptual representation of the scattering characteristics
(volume and geometric-optical) for the red (Table 5) and NIR (Table 6)
bands. In general, the BRDF archetypes change from dome to bowl with
increasing FVC, implying an increasing volume scattering and decreas-
ing geometric-optical scattering as a canopy becomes more closed. For
both red and NIR, soil types with different textures represent purer
dome shapes, while the dense vegetation locationswith high FVC repre-
sents purer bowl shapes. There is some variability in the site descrip-
tions (Tables 5, 6) within the AFX archetypes 2 and 3. This suggests
Fig. 5. 4 BRDF classes derived from 69 BRDF shapes of ground measurements with each color
that more precise model simulations may be needed at a site level to
further understand the response of AFX values to canopy architectures
and background optical properties especially for vegetation with dis-
continuous canopies.

3.4. Assessment of the AFX with satellite data and model simulations

3.4.1. Comparison of AFX with NDVI for the MODIS data
The AFX from the MODIS BRDF MCD43A1 product for red and NIR

bands is compared to the NDVI for the North America region using
only high-quality full-inversion retrievals (Fig. 7). The results show a
very large variation in AFX values for a given narrow band of NDVI
values associated with a broad land cover class. The first two principal
components derived by the principal component analysis (PCA) are
plotted as black lines across the scatter plot. Althoughmore of the over-
all variation is explained by NDVI since PC1 (65%) is almost horizontal
representing the same BRDF class in the original (top) and normalized (bottom) fashions.
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AFX=0.671 AFX=0.892

AFX=1.006 AFX=1.241

AFX=0.685 AFX=0.920

AFX=1.046 AFX=1.181

Fig. 6. 4 BRDF archetypes (solid curves) and within-class BRDF shapes (dashed line) in red (R1, R2, R3 and R4) and NIR (N1, N2, N3 and N4) bands.
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Table 4
AFX and 4 BRDF archetypal parameters in original and normalized forms for 69 field
measurements in red and NIR bands.

band AFX range AFX
mean

AFXstd fiso fvol fgeo fiso' fvol' fgeo'

Red [0.45,0.79] 0.671 0.103 0.2039 0.0704 0.0552 0.50 0.1760 0.1429
[0.80,0.95] 0.892 0.046 0.1316 0.0370 0.0160 0.50 0.2050 0.0668
[0.96,1.08] 1.006 0.036 0.0873 0.0534 0.0072 0.50 0.3744 0.0470
[1.11,1.69] 1.241 0.127 0.0395 0.0544 0.0011 0.50 0.7311 0.0106

NIR [0.51,0.78] 0.685 0.086 0.3618 0.0927 0.0937 0.50 0.1367 0.1290
[0.87,0.97] 0.920 0.045 0.2865 0.1057 0.0309 0.50 0.2121 0.0564
[0.99,1.11] 1.046 0.031 0.3176 0.1834 0.0157 0.50 0.3048 0.0271
[1.13,1.27] 1.181 0.045 0.3389 0.3253 0.0006 0.50 0.4871 0.0015
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and parallel to the NDVI axis, significant variation is explained by PC2
(35%) which is almost vertical and parallel to the AFX axis. Again, it is
important to note that although several studies have suggested that
NDVI is linearly related to the individual MODIS BRDF parameter,
i.e., fvol or fgeo (e.g., Bréon & Vermote, 2012; Vermote et al., 2009), our
finding demonstrates that the AFX (based on geometric and volume
parameters normalized to remove the spectral reflectance amplitude)
is approximately orthogonal to NDVI, especially for MODIS data,
and contains additional important information related to vegetation
structure as is demonstrated in Section 3.4.3 below.

3.4.2. Derivation of BRDF archetypes from MODIS data
TheMODIS data from the 26 EOS LVCS coveredmore of the potential

global variation in vegetation and land surface structure than was avail-
able from the 69 field sites (Table 1). As a result, the analysis (with the
same methods as applied to the field site data above) indicated that 6
archetypes, somewhat depending on different phenology and different
bands, were sufficient to represent the potential BRDF shapes for
MODIS reflectance data in each of four phenological seasons, and also
over the entire whole year (Fig. 8). We must note that the RMSE values
derived in this way have smaller values than using real observations
since the random errors of observations have already been smoothed
out bymodel; therefore, the RMSE values between the BRDF archetypal
surface and each within-class model surface mainly reflect the discrep-
ancy between the two models. Fig. 8 indicates that as the number of
BRDF archetypes increase, the discrepancy between twomodel surfaces
decreases and accounts for N80% of the total fit-RMSE for 6 archetypes
(right lower subplot), indicating that there are sufficient BRDF arche-
types to describe the observed variation.

Fig. 9 shows 6 BRDF archetypes for each MODIS band. The annual
archetypes are also representative of the seasonal phenological arche-
types derived (data not shown). However the seasonal archetypes
showed greater dynamic variation with the values from the maturity
Table 5
Descriptions of BRDF archetypal classes derived from 69 measurements in red band. FVC indic

BRDF class (num) AFX range
(mean)

FVC Data source

1
(10)

0.45–0.79
(0.671)

0 Soil textured (Irons et al., 1992); plowed
land (Deering et al., 1992)

0.32–0.80 Sowing-in-row Crops (Leroy & Bréon, 19
dense buildings (AVHRR)

2
(23)

0.80–0.95
(0.892)

0 Bare soil/lava (Deering et al., 1992)
0.11–0.74 Open or sparse grass or crops (Kimes, 19

vegetable (Leroy & Bréon, 1996 for air-b
0.12–0.51 Sparse bushes on light background (Dee

clumping trees (BOREAS);
3
(23)

0.96–1.08
(1.006)

0 Bright soils/alkali flat (Deering et al., 199
0.12–0.76 Major sparse uniform grass (Kimes et al.

(Tsay et al., 1998 for air-borne SCAR)
0.21–0.73 Sparse-to-dense uniform clumped-foliag

4
(13)

1.08–1.69
(1.241)

0.60–0.98 Dense layered crops or grass (Kimes, 198
0.73–0.89 Dense layered tree (Kimes et al., 1985; T
season being greater than those from the dormancy season, and the
green-up and senescence seasons showing intermediate values. The
BRDF archetypes are somewhat band-dependent with visible bands
capturing a wider range of dynamics than the NIR bands. Although
the BRDF archetypes are also somewhat phenology-dependent, the
archetype-to-archetype fit-RMSEs for the model surface between the
entire one year period and each of the four phenological seasons
approximates to ~0.004 at 30° solar zenith angle, indicating that 6
one-year BRDF archetypes are appropriate to represent the generalized
anisotropy of vegetated surface in the 7MODIS bands at the global scale.
Within-archetype variation (data and shapes) is not presented here due
to space limitations, but the same quantitative framework to qualify the
representativeness of the archetypes was applied to the MODIS data.

3.4.3. Response of AFX to canopy architectures and background
optical properties

Simulations with the 5-Scale BRDF model demonstrate that there
is significant variation in the response of the AFX to variation in
canopy architectures, background optical properties, and canopy cover
between the red and NIR bands (Fig. 10). The response to the crown
coverage of woody vegetation is non-linear, and differs between the
spectral bands depending upon vegetation type. The response observed
(Fig. 10) indicates that scattering processes within canopy radiative
regime changewhen canopy architecture and background optical prop-
erties change. For the NIR band, there is mainly an increasing trend in
the AFXNIR value with increasing crown coverage (thus stem density)
for the three cover types indicating that the volume scattering increases
with the crown coverage of vegetation canopy.

For the red band, the response of AFXred to crown coverage is more
complex. There is first a decreasing trend in the AFXred with crown
coverage for all soils and vegetation types, and then a transition to an
increasing trend in the AFXred for dark soil alone (and somewhat for
Conifer with two other soils as well). Such a “bowl shape” response in
AFXred to crown coverage reveals an increasing geometric-optical scat-
tering response first, followed by an increasing volumetric scattering
with increasing crown coverage. The location of the changeover points
in the “bowl shape” response somewhat relies on the vegetation types.

AFX values are sensitive to stem density although the overlapping
range of stem density for three types is not enough to allow a complete
analysis (Fig. 10a–c). The soil effect on the sensitivity of AFX values
reveals a trend of slow increase with crown coverage. This can be seen
through the discrepancies between the different soils for the same veg-
etation typewith crown coverage. Althoughwe cannot separate vegeta-
tion structure communities (stem density, crown shape, crown size,
tree high and foliage clumping) as was used in the simulation, since
real vegetation stands are being evaluated, the general response of
AFX to these structural associations can be analyzed through calculation
ates fractional vegetation cover.

BRDF class descriptions

field (Kimes, 1983); rock strewn Very strong scattering from discrete
crowns/objects

96 for air-borne POLDER; Ranson et al., 1985);

Major scattering from discrete
crowns/objects83); Tiger Bush (air-borne ASAS);

orne POLDER)
ring et al., 1999, 1992); major sparse

2) Lambertian surface
, 1985; FIFE); cerrado Major scattering from leaf-layer

type
e trees (Deering et al., 1999, 1994; BOREAS)
3; Kimes et al., 1985; Ranson et al., 1985 BOREAS) Very strong scattering from

leaf-layer typesay et al., 1998 for air-borne SCAR; BOREAS)



Table 6
Descriptions of BRDF archetypal classes derived from 69 measurements in NIR band. FVC indicates fractional vegetation cover.

BRDF class (num) AFX range (mean) FVC Data source BRDF class descriptions

1
(10)

0.50–0.78
(0.685)

0 Soil textured (Irons et al., 1992); plowed field (Kimes et al., 1985);
rock strewn land (Deering et al., 1992);

Very strong scattering from discrete
crowns/objects

0.32–0.80 Sowing-in-row Crops (Leroy et al. for air-borne POLDER; Kimes, 1983);
dense buildings (AVHRR)

2
(23)

0.87–0.97
(0.692)

0 Bare soil (Deering et al., 1992) Major scattering from discrete
crowns/objects0.11–0.68 Sparse or open grass (Kimes, 1983; Vierling et al., 1997); Tiger Bush

(air-borne ASAS); sparse woodland (Tsay et al., 1998 for air-borne SCAR)
0.12–0.86 Sparse bushes (Kimes, Newcomb, Nelson, & Schutt, 1986); major sparse

clumping trees (BOREAS); other dense trees
3
(23)

0.99–1.11
(1.046)

0 Bright soils/alkali flat (Deering et al., 1992) Lambertian surface
0.14–0.98 Sparse-to-dense uniform grass or crops (Kimes, 1983; FIFE) Major scattering from leaf-layer type
0.40–0.89 Sparse-to-dense uniform clumped-foliage trees (Deering et al., 1999; BOREAS)

4
(13)

1.13–1.27
(1.181)

0.60–0.90 Dense layered crops or grass (Kimes et al., 1986; Ranson et al., 1985; BOREAS) Very strong scattering from
leaf-layer type
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of the standard deviation of three vegetation types for same soil
brightness. Fig. 10d shows that the vegetation structural associations
are more sensitive to AFX values at the low-to-moderate range of
crown coverage. However, further investigation into the potential defi-
nite relationship between the AFX and individual vegetation structural
parameter obviously needs more substantial simulation, modeling and
validation.

The numbered AFX zones separated by dashed lines in both bands
represent the BRDF archetype classes. Obviously, there is a wider re-
sponse of BRDF archetype class to canopy architecture and background
optical properties. In the red band, such responses are mainly confined
to 2–3 archetype classes for discontinuous vegetation indicating amajor
between-crown surface scattering type. In theNIR band, such responses
expand to more archetype classes (2–5 archetypes) demonstrating the
increased importance of within-crown volume scattering type. Again,
in both bands, such responses appear to be more sensitive to dark soil
than the two other soils.

3.4.4. Analysis of within-class variation of BRDF archetypes
Since AFXhas been shown to be responsive to both canopy condition

and background optical properties in the preceding section, the associ-
ation between land cover types and AFX archetype class for the pheno-
logical seasons is worth exploring (Fig. 11). The data show the number
of pixels associated with each archetype split into herbaceous, mixed,
and forest cover types. The variation in total numbers is determined
by the number of pixels available from the MODIS BRDF/Albedo with
the best QA flag, a number which is different in four the phenology sea-
sons due to cloud cover and atmospheric factors. There is significant
variation in the pixel number among all the land cover types and across
all phenological seasons; therefore, the percent of ecological biome
within each archetype is calculated for direct comparison. While many
Fig. 7. Scatter plots of NDVI vs. AFX in July (day 185) for th
of the EOS LCVS have non-uniform and/or non-typical land coverwithin
the area of a single 500 m MODIS pixel, there are, nevertheless, some
patterns that significantly relate to the AFX archetype classes.

In general, there is no ecological biome exceeding 50% within each
archetype class, revealing the ecological biomes under investigation
and BRDF archetype classes need not coincide. Herbaceous sites are
predominantly split among red archetypes 1–4 during dormancy, but
with a shift more towards archetypes 4 and 5 at green-up andmaturity,
and back to archetypes 3 and 4 during senescence (Fig. 11). For herba-
ceous sites, the NIR archetypes 3–5 predominate during dormancy,
but the pattern shifts towards archetypes 4–6 in green-up andmaturity,
and is highly variable during senescence. This pattern is consistent
with a sequence moving from soil and stubble, to mixed soil and
green canopy, to closed full canopy from dormancy to maturity, and
finally to a spatial mosaic of temporal patterns of harvested crops with
stubble and soil remaining during senescence.

Forest sites are also split among the red archetypes 1–4 during
dormancy and tend to be increasingly dominated by archetypes
3–6 during green-up andmaturity, but have variable archetype asso-
ciated with senescence. The NIR archetype 1–2 predominates during
dormancy and senescence, but sites are divided among the arche-
types at green-up andmaturity. This suggests that there is significant
variation in gap fractions and background optical properties be-
tween leaf-on and leaf-off condition over an entire MODIS pixel
among the forest sites.

The mixed sites showed a more complex phenological behavior for
the red and NIR archetype associations, but archetypes 2–4 tended to
alternately predominate in all phenological stages. It would be expected
that these sites correspond with the archetypes where AFX is highly
sensitive to more variability in fraction of tree canopy and background
properties in relatively open two layer vegetation types. This
e red and NIR bands (values of NDVI b 0 are omitted).



Fig. 8. Fit-RMSEs against the number of BRDF archetypes for four phenological seasons and one year (2004) in 7 MODIS bands at 45° solar zenith angle.

Fig. 9. Plots showing the 6 annual BRDF archetypes for the seven MODIS bands: red (620–670 nm), NIR(841–876 nm), blue (459–479 nm), green (545–565 nm), SWIR1
(1230–1250 nm), SWIR2 (1628–1652 nm) and SWIR3 (2105–2155 nm).
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Fig. 10. Response of AFX to canopy architectures (size, shape and spacing) and background optical properties (dark, gray and bright soils) for three discontinuous vegetation canopy in red (left ver-
tical axis) and NIR (right vertical axis) bands for Conifer (top), Savanna (middle) and Shrub (bottom). The numbered AFX zones separated by dashedlines in both bands are BRDF archetype class.
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investigation is basically consistent with the result of the 5-Scale BRDF
model simulation although these global EOS sites have more complex
heterogeneous environments (e.g., a variety of land covers, different
phenological processes and unstable background properties).

3.4.5. Global characterization of BRDF archetypes
The global pattern of red and NIR AFX archetypes for January and

July in the year 2004, is shown in Fig. 12 along with the distribution
of QA flags. The red and NIR bands capture themajor photosynthetic re-
sponses. An assessment of the QA flags (Fig. 12a) showed that tropical
regions in Africa, South America and South East Asia have the greatest
reduction in data quality principally due to cloud. High-quality full-
inversion retrievals (QA = 0 and 1) accounted for only 9.8% in January,
48.3% in April, 68.8% in July and 12.4% in October. If the temporallyfitted
pixels (QA = 2), for which a phenological temporal curve fitting
exercise has been performed, are also treated as an acceptable quality
flag, the areas become 22.3% in January, 86.4% in April, 97.2% in July
and 21.3% in October.

In order to examine within-class variability in relation to the AFX
and BRDF archetypes, we first perform a quantitative analysis of the
~25 km2 areas surrounding three EOS sites (Howland, Skukuza and
SkyOaks). These regions have purer IGBP classes corresponding to Ever-
green Needleleaf Forest (Conifer), Savanna and Shrub (http://landval.
gsfc.nasa.gov/coresite_gen.html) similar to what was used in the

http://landval.gsfc.nasa.gov/coresite_gen.html
http://landval.gsfc.nasa.gov/coresite_gen.html
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Fig. 11.Within-class variations of BRDF archetypes (in percent) related to a broad ecological biome of Herbaceous, Mixed and Forest over 26 EOS LVCS.
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model simulation. The vertical crown coverage is approximated by the
fractional coverage of woody cover extracted from MODIS MOD44B
Vegetation Continuous Field (VCF) product that provides global frac-
tional cover estimation for trees, herbaceous plants and bare soil
(Hansen et al., 2003, 2002). To remove possible noise and fill the gaps,
the available AFX values on three continuous DOYs were averaged for
Howland (089, 097, 105), Skukuza (089, 097, 105) and Sky Oaks (169,
177, 185). During this time, there is not an obviously herbaceous back-
ground in Howland and Sky Oaks. At Skukuza, the trees are still in a
mostly full leaf state, while in the grass layer blades have begun to
senesce and detach (Archibald & Scholes, 2007). The values in the
average AFX image, as well as the corresponding VCF values, are then
averaged respectively in terms of 10% of VCF slices. The response of
AFX to VCF for these three regions is examined (Fig. 10e).

As was examined in the 5-scale model simulation, the AFX is gener-
ally sensitive to theVCF anddistinctly differs between red andNIR. AFX-
red generally displays an increasing trend, while AFXNIR seems to be
saturated for Sky Oaks, but decreases for Howland and Skukuza at the
higher VCF ranges. The difference between the model simulation and
the real data most probably comes from more complex heterogeneous
environments and background of the three areas surrounding these
EOS sites. In general, these three regions are classified into archetype
2–3 for AFXred, but into archetype 3–4 for AFXNIR (Fig. 10e). This result
concurs with the 5-scale model simulation results.

An extensive qualitative analysis of the maps of AFX archetype dis-
tribution shows a high level of spatial heterogeneity in the geographical
patterns within regions (Fig. 12) indicating that the archetypes are
representing directional information that is not captured by NDVI
maps (not shown here due to space limitation) or the IGBP map
(Fig. 2) alone. If the MODIS band patterns are examined for the key
channels in turn, several major features are evident from the maps.
Within the tropics, South American, African, and SE Asian forested
areas exhibit consistent associations with red archetype 3 and NIR
archetype 4. Saharan Africa and Arabia shift from red archetype 5 in
January to flat archetype 4 in July (Fig. 12b). There is a similar variation
in the spatial pattern of NIR archetypes in these areas, but from the 5/4
archetypes to 3 archetype. A distinct area of NIR archetype 1 (strong
dome shape) is seen across the south-western USA, Mexico, the coast-
line of the Mediterranean and the Red Sea, and through Eurasia to
SE Asia and China in January (Fig. 12c). By contrast a significant band
of NIR archetype 6 (strong bowl shape) stretches across the north-
central areas of North America and Europe, Russia into China, likely
corresponding to active agriculture (Fig. 12c).
The variation between the IGBP class and BRDF archetype class can
be more easily examined in a desert ecoregion (e.g., Sahara Desert)
where within-class BRDF archetypes change with space and season
(Fig. 12). Archetypes 3–5 are predominant in the red and NIR in this de-
sert ecoregion indicating primarily Lambertian and slight bowl/dome
shapes (a few extreme domes as well). This is most probably due to
the somewhat heterogeneous environments in this desert ecoregion
(e.g., sand dunes, stone plateaus, gravel plains, dry valleys and salt
flats) as well as seasonal migration of vegetation associated with
the change of zonal wind and specific humidity in Northern Africa
(Harada, Sumi, & Ohmori, 2003).

4. Discussion

In this study, a new anisotropic flat index (AFX) was developed
using both ground measurements and satellite observations from
MODIS. The AFX characterizes the variability of dome-to-bowl aniso-
tropic reflectance patterns. An AFX b1 shows that geometric-optical
surface-scattering effects are dominant, indicating a dome-shaped an-
isotropic reflectance pattern with a prominent backscatter reflectance
peak being located in retro solar view angle. An AFX N1 shows that
volume-scattering effects are dominant, indicating a bowl-shaped re-
flectance asymmetry where reflectance near nadir is lower than for
larger scattering angles with the minimum usually displaced towards
the forward scattering direction in principal plane. An AFX = 1 reveals
that geometric-optical surface-scattering counteracts volumetric scat-
tering, indicating an approximately flat BRDF shape. The AFX is not
sensitive to observation geometries and noise contamination when
there are sufficient observations to adequately sample the viewing
hemisphere. This implies that the BRDF shapes indicated by the AFX
are stable and are able to resist random noise contamination.

There was moderate correlation between the NDVI and the AFXs in
red and NIR bands (~0.6 and ~0.5) for field data. However, the compar-
isons for satellite measurements from MCD43GF over a range of biome
types at global scale using a PCA technique demonstrate that the AFX is
approximately orthogonal to NDVI. The 5-Scale BRDF model simulation
further demonstrates that the AFX is mainly driven by the sensitivity of
land surface intrinsic properties to directional signatures in relation to
land surface structures.

The AFX supports a BRDF-based classification scheme for BRDF ty-
pology. The classification results in a defined set of AFX archetypes for
each of the seven spectral channels in theMODIS BRDF product. As a re-
sult, the major development from this study lies in the derivation of a
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consistent BRDF typology with discrete AFX archetypes representing
major variability of BRDF shapes across the full range of structural vari-
ation. BRDF shapes derived from approximating BRDFmodels generally
don't appear to be distinctly separate because regular BRDF effects are
confused by the reflectance amplitudes determined by model isotropic
parameter. The AFX normalizes the anisotropic reflectance pattern,
and thus provides a basis for clearly characterizing BRDF shape, and
therefore clearly defining BRDF types in away that is directly connected
to structural change. Extensive analyses showed that four BRDF arche-
types could be derived from 69 collected fieldmeasurements. However,
with a more comprehensive coverage of land cover types and seasonal
change, approximately 6 BRDF archetypes were sufficient to represent
the anisotropic reflectance pattern at a global scale over the full range
of biome types.

An extensive analysis of the maps of AFX archetype distribution
demonstrates BRDF archetype classes and ecological biomes under in-
vestigation need not coincide. Global mapping of these archetypes re-
vealed substantial fine scale variation, with some broad geographic
patterns of archetypes and groups of archetypes. Analysis of the
Fig. 12. Global patterns for AFX archetypes for the four most functionally sensitive spectral band
for data for DOY 001 and 185; b) Red band AFX for DOY 001 and 185; c) NIR band AFX for DO
frequency distributions of AFX archetypes within MODIS IGBP land
cover classes for bothNH and SH showed thatwhile there are consistent
patterns of archetype dominance and changes in dominance between
seasons, there is also a large amount of variation in archetypes within
classes due to structural variations, and significant structural informa-
tion may be available from AFX archetypes from SWIR channels. This
will have to be explored in the future.

The key information content embedded in the AFX archetypes lies in
the relationship between the BRDF typology and surface condition. The
5-Scale BRDF model simulation demonstrates that the continuum in
BRDF shape from dome to bowl reflects a non-linear response to the
change in surface properties frommajor scattering fromdiscrete objects
through a smooth surface to major scattering from dense continuous
leaf-canopies. The maps of archetypes and the frequency distributions
of archetypes within land cover types and hemispheres reveal substan-
tial fine scale variation. No one archetype is representative of a discrete
land cover type except perhaps where the land surface is barren or for
very dense forests such as are found in the tropics. The highest variabil-
ity, but also perhaps the highest information content is potentially
s for DOY 001 and 185 and corresponding quality assurance (QA). a) Global pattern of QA
Y 001 and 185.

image of Fig.�12


Fig. 12 (continued).
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found in the land covers with heterogeneous arrangements and densi-
ties of multi-layer objects and leaf-canopies. Consequently, at fine
scale, e.g., a savanna with dense grassy understory may be less distinct
from a woodland, than would be a degraded savanna with predomi-
nantly bare soil underlying the tree canopy. Further analysis of data at
regional and landscape scales, appropriate to aggregation of the arche-
type differences, is needed to complement and enhance the general
patterns and associations with land cover types.

Some detailed aspects and assumptions associated with the deriva-
tion of AFX and the BRDF typology require further examination and dis-
cussion. First, the assumption that a given heterogeneous land surface
reflectance can be viewed as a combination of material surface scattering
and volume scattering may need further examination for land covers
such as ice and snow that can also exhibit significant forward scattering
characteristic. Second, the derivation of AFX does depend upon the fit
of the model. The kernel-driven linear BRDF model was originally
designed to comprise a collection of different kernels for various land
cover types. These kernel functions are derived from different assump-
tions for vegetation canopy structure (e.g., small or large LAI for
RossThin or RossThick kernels for continuous vegetation canopy; sparse
or dense tree density for LiSparse and LiDense kernels for discrete
crown), and view and illumination geometries (e.g., reciprocity; non-
reciprocity). Difficulties in implementing these multi-kernel models
without imposing severe a priori assumptions and in assigning consis-
tent quality evaluations have caused a move away from multiple
models during operational MODIS BRDF retrieval. However, use of a
single uniform model may result in some discrepancies in modeling
the radiation field (Hu et al., 1997; Wanner et al., 1995), especially in
hotspot direction (Huang, Jiao, Dong, Zhang, & Li, 2012; Maignan et al.,
2004). Further testing with alternative kernels is a continual process
although to date, the RTLSR model continues to represent the largest
number of surface types (Huang et al., 2012). Finally, it must be pointed
out yet again that the kernel functions of kernel-driven BRDF model
are not necessarily orthogonal (Lucht et al., 2000) and the model aniso-
tropic parameters (fgeo and fvol) do not necessarily rise and fall in a
totally complementary fashion. This results in a few, rare situations
where the geometric-optical and volumetric parameters are both in-
creasing and/or decreasing. These few extreme anisotropic parameters
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could generate a few BRDF shapes that enlarge the within-class
variances of BRDF archetypal classes and therefore need to be further
examined in near future.

5. Conclusions

In this study, the AFX summarizes BRDF archetypes and presents the
uniqueness of this information beyond NDVI (e.g., somewhat orthogo-
nal to NDVI for MODIS data) as it reflects a non-linear response to
changes in surface structural properties from major scattering from
discrete objects through the use of model simulation. The AFX supports
a BRDF-based classification scheme for BRDF typology. The BRDF arche-
type classes derived by this method and ecological biomes being ex-
plored need not coincide. Additionally, these BRDF archetypes could
be used as a priori knowledge in estimation of biophysical parameters
for certain ecological applications (e.g., surface albedo in a separate
paper). These results demonstrates that the AFX shows promise as an
additional source of information from anisotropic reflectance patterns
in relation to different vegetation properties beyond that which can be
obtained from spectral information alone. These vegetation properties
are strongly associated with anisotropic reflectance, and shadowing,
and different scale variations in clumping, gap fractions and sunlit and
shaded leaf fractions, and thus need to be further explored in near
future. Many physical models (e.g., Li–Strahler model, 1992; Strahler–
Juppmodel, 1990; 5-Scalemodel, 1997, etc.) have shown that the vegeta-
tion canopy architectures strongly determines the canopy BRDF (please
see the review by Strahler, 1997). Recent research has shown that
addition of BRDF shape information can improve overall classification ac-
curacy by ~5%beyond spectral Nadir-BRDFAdjustedReflectances (NBAR)
for POLDER andMODIS data at the region-to-global scale (DE Colstoun &
Walthall, 2006; Jiao & Li, 2012; Jiao et al., 2011). However, an archetype-
based BRDF characterization of the terrestrial surface may also provide
meaningful structural classes in modeling domains, and advance the
role of BRDF shapes in applications beyond mere assistance with
classification.
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