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The tasselled cap transformation (TCT) is a useful tool for compressing spectral data
into a few bands associated with physical scene characteristics with minimal informa-
tion loss. TCT was originally evolved from the Landsat multi-spectral scanner (MSS)
launched in 1972 and is widely adapted to modern sensors. In this study, we derived
the TCT coefficients for the newly launched (2013) operational land imager (OLI)
sensor on-board Landsat 8 for at-satellite reflectance. A newly developed standardized
mechanism was used to transform the principal component analysis (PCA)-based
rotated axes through Procrustes rotation (PR) conformation according to the Landsat
thematic mapper (TM)-based tasselled cap space. Firstly, OLI data were transformed
into TM TCT space directly and considered as a dummy target. Then, PCAwas applied
on the original scene. Finally, PR was applied to get the transformation results in the
best conformation to the target image. New coefficients were analysed in detail to
confirm Landsat 8-based TCT as a continuity of the original tasselled cap idea. Results
show that newly derived set of coefficients for Landsat OLI is in continuation of its
predecessors and hence provide data continuity through TCT since 1972 for remote
sensing of surface features such as vegetation, albedo and water. The newly derived
TCT for OLI will also be very useful for studying biomass estimation and primary
production for future studies.

1. Introduction

Vegetation and water indices derived from satellite reflectance data are two of the primary
sources of information for operational monitoring of the Earth’s land cover. Almost all the
present vegetation indices (VIs) in remote sensing combine reflectance measurements
from different portions of the electromagnetic spectrum to provide information about
vegetation coverage on the ground. One of the primary applications of remote sensing is
to identify patterns of vegetation distribution on the ground followed by assessing
temporal changes in vegetation. Higher reflectance of vegetation and lower reflectance
of water in near infrared (NIR) band along with different spectral responses of various
vegetation types from visible to shortwave infrared (SWIR) led researchers to develop
numerous indices (Jackson and Huete 1991; Richardson and Everitt 1992; Richardson and
Wiegand 1977). Such indices are based on different algebraic combinations of these bands
for proper analysis of land features. In contrast to its higher reflectance in NIR, vegetation
has low reflectance in both the blue and the red regions of the spectrum due to absorption
by chlorophyll for photosynthesis. These are the reasons why most of the traditional

*Corresponding author. Email: zhanglf@radi.ac.cn

Remote Sensing Letters, 2014
Vol. 5, No. 5, 423–431, http://dx.doi.org/10.1080/2150704X.2014.915434

© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

R
em

ot
e 

Se
ns

in
g 

A
pp

lic
at

io
n]

 a
t 2

3:
23

 1
2 

Ju
ne

 2
01

4 



vegetation indices are based on red–NIR space while using an inclined red–NIR line in
red–NIR space as the line of zero vegetation for bare soil (Ray 1994; Viña et al. 2011;
Payero, Neale, and Wright 2004; Bannari et al. 1995; Gitelson et al. 2002). Based on this
soil line, vegetation indices can be divided into three categories: the slope-based VIs (e.g.
Normalized Difference Vegetation Index – NDVI, Soil Adjusted Vegetation Index – SAVI
and Ratio Vegetation Index – RVI, etc.), the distance-based (or perpendicular line) VIs
(e.g. Perpendicular Vegetation Index-PVI, Difference Vegetation Index-DVI and Weighted
Difference Vegetation Index-WDVI, etc.) and the orthogonal transformation VIs (such as
Vegetation Index based on Universal Pattern Decomposition Index – VIUPD, etc.)
(Richardson and Everitt 1992; Huete 1988; Clevers 1988; Huete, Jackson, and Post
1985; Richardson and Wiegand 1977; Rouse et al. 1973; Jordan 1969; Zhang et al.
2007). The tasselled cap transformation (TCT) belongs to the category of orthogonal
transformation too and has several advantages over other traditional VIs (Crist and Cicone
1984b; Kauth and Thomas 1976).

The TCT has revolutionized the concept of understanding the plant growth patterns in
spectral space formed by different bands combination (Kauth and Thomas 1976). Later, it
was employed to understand the soil moisture and other hydrological features. The
propounders of TCT used MSS data to investigate the plant growth patterns in connection
with ‘triangular cap-shaped region with a tassel’ in red–NIR space (Kauth and Thomas
1976; Ray 1994). The top of their tasselled cap with low red reflectance and higher NIR
reflectance was found representative of higher vegetated areas, while the opposite to the
top, the flat side of the cap (not perfectly horizontal), was found representative of the bare
soil (Ray 1994). The encapsulation of physical scene characteristics in the form of
tasselled space has made TCT a useful index and as an investigative tool in the field of
phenology and ecology (Lobser and Cohen 2007). The evolution of TCT is indebted to
the profound research work done by EP Crist using both the satellite sensors like Landsat
thematic mapper (TM) and spectrometer reflectance factor data for investigating crop
development (Crist and Cicone 1984a). These series of findings became very helpful in
determining the crop condition and landcover classification (Oetter et al. 2001; Dymond,
Mladenoff, and Radeloff 2002; Cohen and Spies 1992; Cohen, Spies, and Fiorella 1995;
Skakun, Wulder, and Franklin 2003). These were performed not only by using Landsat
data but also through several newly developed sensors such as MODIS, QuickBird and
IKONOS (Yarbrough, Easson, and Kuszmaul 2005; Zhang et al. 2002; Horne 2003).

Both multi- and hyperspectral data have highly correlated bands. TCT not only
compresses several bands into few bands but also decorrelates them by transforming
them orthogonally into a new set of axes associated with physical features. Traditionally,
three axes were defined: (I) Brightness, (II) Greenness and (III) Wetness. Firstly, a rotation
was defined to separate the vegetation from non-vegetated features by maintaining the
orthogonal property between I and II components. Then, rotating components II and III
orthogonally separated the water from vegetation features. Finally, orthogonal rotation
between components I and III was implemented in order to separate water from features of
vegetation and non-vegetation (Zhang et al. 2002). Brightness – the first feature of TCT –
is a weighted sum of all the bands and accounts for the most variability in the image. It is
typically associated with bare or partially covered soil, natural and man-made features,
and variations in topography. Greenness is a measure of the contrast between the NIR
band and the visible bands due to the scattering of infrared radiation resulting from the
cellular structure of green vegetation and the absorption of visible radiation by plant
pigments. Soil reflectance curves (soil signatures) are represented with higher values in
‘Brightness’ while they are expressed in low ‘Greenness’ values. The third component is
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orthogonal to the first two components and is associated with soil moisture, water and
other moist features (Crist and Cicone 1984b; Crist and Kauth 1986; Zhang et al. 2002).
There are three planes associated with these features: the plane of soils (Brightness/
Wetness space), the transition zone (Greenness/Wetness space) and the plane of vegetation
(Brightness/Greenness space). Pre-planting field having bare soil will be analysed best in
the plane of soils. After planting, it would shift up through the transition zone towards the
plane of vegetation as the crops matured and then would ‘tassel out’ with senescence. All
these phases of plots would together form the shape of a ‘tasselled cap’ (Crist and Kauth
1986; Crist and Cicone 1984b; Kauth and Thomas 1976).

Until recently, there were no standards for deriving the orthogonal rotation coefficients
due to the pluralistic interpretation of the tasselled cap features (Lobser and Cohen 2007).
Any number of TCTs may be developed if the choice of aligning these three axes is left to
the discretion of a researcher. Since the launch of Landsat 8 in 2013, it was being
demanded by researchers working on vegetation how to use TCT for this new sensor in
a same way they used it for other sensors. Addressing that dire need of researchers, this
study is presenting the new TCT coefficients for operational land imager (OLI) in a form
of this letter. To maintain the continuity among the sensors for the same tasselled cap idea
originally propounded by Kauth and Thomas (1976) and investigated by Crist with other
researchers (Crist and Kauth 1986; Crist 1985; Crist and Cicone 1984b, 1984a), this study
uses the Procrustes rotation (PR) transformation for deriving the TCT coefficients for OLI
of Landsat 8 (Andrade et al. 2007, 2004; Lobser and Cohen 2007).

2. Materials and methods

2.1. Data set used

In this study, we not only used the same areas that were used before by earlier researchers
but also added some new areas to represent a wide variety of land cover types to make
TCT suitable for all type of areas and climates (Table 1). It is important to mention here
that the first comprehensive study to calculate TCT for TM data was conducted by Crist
and Cicone (1984b) and they selected only three scenes to derive their famous TM TCT
index (also shown in Table 1). Moreover, they mainly used North Carolina scene (24
September 1982) to derive these coefficients and described this scene as an ideal scene
due to its diversity holding large fields surrounded by forest and water. Therefore, we used
the same areas in this study not only to derive TCT for Landsat 8 but also to make new
coefficients more representative of vegetation and other landcover types, and several other
areas were also included to corroborate the analysis (Table 1).

The at-satellite reflectance-based TCT was derived by focusing especially on the
methodology described by Crist and Cicone (1984b), Huang et al. (2002) and Lobser
and Cohen (2007). Conversion from DN to reflectance was done according to the method
mentioned on the website of USGS (http://landsat.usgs.gov/Landsat8_Using_Product.
php). Sub-scenes were chosen from all scenes, and the regions of interest (ROIs) were
defined by using high-resolution imagery of Google Earth. Crist and Cicone used 9000–
13,000 pixel samples from their three sub-scenes. About 2000 random samples were
selected from each of the 10 ETM + scenes by Huang et al. (2002). Approximately
1.2 × 106 pixels were randomly selected by Lobser and Cohen (2007) from their global
sample of MODIS data. A simple random sample may be heavily biased due to the
presence of clouds and snow, so samples generated in this work were only from those
areas that were visibly not affected by clouds and snow (uneven sample size from
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different scenes). We chose a random sample comprising 0.2% (24,371 pixels) for West
Virginia scene, 1% (8510 pixels) for North Carolina scene and 10% (64,000 pixels) for
Idaho scene to rotate axes orthogonally by using principal component analysis (PCA).
Remaining seven scenes were used for the sake of corroboration. In this way, six
orthogonal axes were generated and among which first three axes were used to transform
data by using PR method (Mardia, Kent, and Bibby 1979; Lobser and Cohen 2007;
Andrade et al. 2007, 2004).

2.2. Tasselled cap transformation method

For a sensor carrying four bands, Gram–Schmidt orthogonalization is used (Huang et al.
2002; Crist and Cicone 1984b; Kauth and Thomas 1976). For higher number of bands,
after applying PCA, all three axes are rotated to separate different features from each
other. It has been found that there is no standard mechanism in literature currently
available for this post-PCA rotation, and thus rotation is subjected to interpretation
(Lobser and Cohen 2007). Lobser and Cohen (2007) attempted to standardize derivation
of transformation coefficients for future sensors. By following the standard developed by
them, the below-mentioned approaches were followed:

(1) Firstly, dummy target was generated by applying Landsat TM TCT coefficients on
Landsat 8 data.

Table 1. Study areas.

Scene # Path/Row Location
Rationale for
selection

Acquisition
Date Scene ID

1 121/40 Jiangxi, China Poyang lake, urban and
vegetation areas

14 May
2013

LC81210402013134

2 31/30 Northern
Nebraska,
South
Dakota

Variety of crop fields,
urban areas, airport
and bare soil

23 May
2013

LC80310302013143

3 16/34 West Virginia Mountainous forests,
water bodies and
urban features

30 May
2013

LC80160342013150

4 16/34 West Virginia Mountainous forests,
water bodies and
urban features

15 June
2013

LC80160342013166

5 16/35 North
Carolina

Agricultural holdings,
forest and water
bodies

15 June
2013

LC80160352013166

6 39/31 Idaho Large water bodies and
crop fields

16 June
2013

LC80390312013167

7 121/40 Jiangxi, China Poyang lake, urban and
vegetation areas

1 July 2013 LC81210402013182

8 39/31 Idaho Large water bodies and
crop fields

2 July 2013 LC80390312013183

9 152/41 Indus River
Basin

Indus River, extensive
crop fields

10 July
2013

LC81520412013191

10 152/41 Indus River
Basin

Indus River, extensive
crop fields

27 August
2013

LC81520412013239
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(2) Then, by using PR method, PCA transformed Landsat 8 data were rotated for the
best alignment to the dummy target.

(3) Finally, simple multiplication was done between the transformation coefficients
developed through Procrustes and PCA coefficients to get the final TCT coeffi-
cients for Landsat 8.

Although these components are ultimately rotated, the 3D structure of the data space is
retained through this rotation. Thus, the final transformation is highly dependent upon the
chosen starting dummy target.

2.3. Principal component analysis

PCA maximizes variance while minimizing correlation by means of an orthogonal
transformation (Mardia, Kent, and Bibby 1979). The resulting uncorrelated PC bands
are linear combinations of the original spectral bands. The first few PC bands normally
represent the 90–96% variance in the data, and the remaining bands represent noise
(Mardia, Kent, and Bibby 1979). In this study, PCA is applied on the random samples
representing the vegetation, soil, water and other landcover features to generate the new
components in orthogonal space. All of these new orthogonal components are used in PR.

2.4. Procrustes rotation

In multivariate statistics, PR is based on singular value decomposition (SVD) to decom-
pose a matrix into principal components for simultaneous comparison of several data sets
(Andrade et al. 2007). ‘Procrustes rotation is usually performed on the principal compo-
nents that describe the data instead of on the data itself’ (Andrade et al. 2004). The main
idea of PR is based on comparing two or more spaces where the same variables are
measured. Here, PR is applied on PCA-transformed axes to transform the orthogonal
space in best conformation to the dummy target space based on TM TCT space.

3. Results and discussion

By following the methodology mentioned above, TCT coefficients are derived for differ-
ent landcover types in different time periods to make the derived scenes representative of
all sorts of important features. A 2D scatter plot for both Red and NIR channels can be
seen in Figure 1(a). The diagonal in this distribution is termed as a ‘soil line’. This soil
line in spectral space describes the variation in the spectrum of bare soil in the selected
area. In any image showing the pattern like Figure 1(a), this line can be found by locating
two or more patches of bare soil having different values of reflectance and finding the best
fit line in spectral space (Ray 1994; Viña et al. 2011; Payero, Neale, and Wright 2004;
Bannari et al. 1995; Gitelson et al. 2002).

Figure 1(b) is confirming the concept of ‘triangular cap-shaped region with a tassel’ in
red–NIR space, which was put forward by Kauth and Thomas using MSS data. They
found that the point of the cap (which lies at low red reflectance and high NIR reflectance)
represented regions of high vegetation and that the flat side of the cap directly opposite the
point represented bare soil (Kauth and Thomas 1976).

Table 2 shows the transformation coefficients for Landsat 8 at-satellite reflectance
data. These coefficients are very close to the coefficients of the dummy target image
created through TM-based TCT coefficients. From Table 2, it is evident that Brightness
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has all positive loadings. It means that all six bands contribute for its overall value with
bands 4 (Red), 5 (NIR) and 6 (SWIR1) as maximum contribution. Regions of high
vegetation are found at low Red and higher NIR regions and here (Table 2) both have
higher values of loadings, so any increase in vegetation density will cause less substantial
changes in Brightness. It indicates that this feature will be responsive to soil character-
istics including its albedo instead of vegetation.

The fact that vegetation has higher values of reflectance in NIR while lower in Red
regions of the (electromagnetic) spectrum is displayed by the loadings corresponding to
Greenness in Table 2. Here, Greenness has high positive loadings in NIR while high
negative loadings in Red spectra (Figure 1(b)).
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Figure 1. (a) Scatter plot between Red (band 4) and NIR bands (band 5) along with all five regions
of interests (ROIs); (b) Scatter plot between Brightness and Greenness. It is also called ‘plane of
vegetation’; (c) Scatter plot between Brightness and Wetness. It is also termed as ‘plane of soil’; (d)
Scatter plot between Wetness and Greenness. It is called as ‘transition zone’.

Table 2. TCT coefficients for Landsat 8 at-satellite reflectance.

Landsat 8
(Blue)
Band 2

(Green)
Band 3

(Red)
Band 4

(NIR)
Band 5

(SWIR1)
Band 6

(SWIR2)
Band 7TCT

Brightness 0.3029 0.2786 0.4733 0.5599 0.508 0.1872
Greenness −0.2941 −0.243 −0.5424 0.7276 0.0713 −0.1608
Wetness 0.1511 0.1973 0.3283 0.3407 −0.7117 −0.4559
TCT4 −0.8239 0.0849 0.4396 −0.058 0.2013 −0.2773
TCT5 −0.3294 0.0557 0.1056 0.1855 −0.4349 0.8085
TCT6 0.1079 −0.9023 0.4119 0.0575 −0.0259 0.0252
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When the third feature, i.e. ‘Wetness’ is analysed, Table 2 shows that it contrasts the
sum of the visible and NIR bands with the sum of the SWIR bands. The SWIR bands are
considered to be the most sensitive to both soil moisture and plant moisture, so the
contrast between these two sets of bands mainly highlights moisture-related scene char-
acteristics (Figure 1(c)) (Crist and Cicone 1984b).

On the basis of these characteristics of Brightness, Greenness and Wetness, Figures 1
(b–d) show the planes between first three transformations. The plane between Brightness
and Greenness is considered as a plane of vegetation, while the plane between Brightness
and Wetness is considered as a plane of soils (Crist and Cicone 1984b).

These three planes (Figures 1 (b–d)) are in accordance with those three planes
constructed for Landsat TM TCT space by Crist and Cicone (Crist and Kauth 1986;
Crist and Cicone 1984b). Thus, using the standard approach to derive the coefficients for a
new sensor gives the same TCT space developed by TCT pioneers and thus provides the
data continuity for studying the phenology and analysing the temporal series for vegeta-
tion change or biomass variation.

4. Conclusions

TCT compresses and decorrelates the data into few bands associated with physical scene
characteristics of the land surface. Brightness, Greenness and Wetness are those few
important components mostly discussed in literature. Brightness is related to the soil
and albedo, Greenness is associated with vegetation and Wetness is mostly connected with
water contents. As transformation solely depends upon the interpretation of the data,
standardization was necessary to develop uniformity in the TCT based on Landsat MSS,
TM and ETM + sensors as well as those based on the new sensors. This study investigated
the method using TM-based TCT coefficients to simulate OLI image to be used as a
dummy target in PR method for transforming OLI orthogonal space. The resulted
transformation coefficients successfully differentiated soil from vegetation, vegetation
from water and bare soil features from water features. The standardized approach used
in this study has a great potential for deriving coefficients for future sensors such as
Sentinel-2, etc. Validation of coefficients will be done in a form of a comparison with
ETM + in a detailed next paper.
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