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Abstract This study aimed to investigate the potential of spatially distributed data products in
estimating soil respiration (Rs), including land surface temperature (LST) and spectral vegetation index
from the Moderate Resolution Imaging Spectroradiometer (MODIS) and root zone soil moisture derived
from the assimilation of the NASA Advanced Microwave Scanning Radiometer-EOS and a land surface
model, at a deciduous broadleaf forest site in the Midwest USA. Several statistical models were used to
examine the dependencies of Rs on these spatial data products, and accuracy of these models was
compared to the models based on in situ measurements. The models based on mean LST (i.e., averaging
nighttime and daytime LST from MODIS) and root zone soil moisture explained 82% and 72% of seasonal
variations in Rs for spring and winter dormant periods, respectively. In the growing season, the models
depending on mean LST, root zone soil moisture, and photosynthesis-related enhanced vegetation index
showed comparable accuracy with the models entirely based on in situ measured data, except for the
midgrowing period. Drought stress led to a relatively low explanation capacity for the Rs model based on
spatial data products during the midgrowing period. However, this model still explained 76% of temporal
dynamics of Rs over the midgrowing period. Our results suggested that simple models based entirely on
spatial data products have the potential to estimate Rs at the temperate deciduous forest site. The
conclusions drawn from the present study provided valuable information for large-scale estimates of Rs
in temperate deciduous forest ecosystems.

1. Introduction

Soil respiration (Rs) is a major component of CO2 exchange between terrestrial ecosystems and the atmosphere
[Bahn et al., 2008; Davidson et al., 2006; Ryan and Law, 2005; Vargas et al., 2011]. Rs can also be used as an
ecological indicator of ecosystem functioning [Oyonarte et al., 2012]. Thus, accurate Rs modeling is required to
assess carbon budgets of terrestrial ecosystems [Richardson et al., 2006] and understand the effect of global
warming on Rs [von Deimling et al., 2012].

Rs is determined largely by a number of biotic and abiotic variables [Amos et al., 2005; Reichstein et al., 2003].
Regression analysis using abiotic variables such as soil temperature, soil water content, or both as predictors
[Davidson et al., 1998; Gaumont-Guay et al., 2006; Lloyd and Taylor, 1994] has been a classical approach in
modeling Rs. In addition, the close coupling between canopy photosynthesis and Rs can make the
photosynthate supply become another key determinant of the soil surface CO2 flux [Högberg et al., 2001;
Kuzyakov and Richkovaw, 2010; Moyano et al., 2007; Tang et al., 2005a; Vargas et al., 2010]. Therefore, many
empirical relationships have been established between field measurements of Rs and soil temperature, soil
water content, and photosynthesis-related factors [Arkebauer et al., 2009; Amos et al., 2005; Han et al., 2007;
Liu et al., 2006]. However, most of these established relationships only used data measured at the local scale. To
obtain Rs at regional, continental, or global scales, significant efforts are needed to use the spatially distributed
data for Rs estimation.

To date, remote sensing is used as a major tool for estimating the spatial distribution of carbon balance
components, such as gross primary productivity (GPP), net primary productivity, and net ecosystem exchange
(NEE) [Kimball et al., 2009; Peng and Gitelson, 2011; Running et al., 2000; Xiao et al., 2004]. However, Rs estimation
based on remote sensing data remains unclear. Current archives and the availability of satellite data have
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allowed the possibility of using the remotely sensed data for Rs estimation, such as land surface temperature
(LST) and spectral vegetation indices (VIs). LST from remote sensing is possible as a predictor of Rs because of
LST’s close relationships with the physiological activity of plants and various temperature-related variables
[Mostovoy et al., 2006; Vogt et al., 1997; Zhang et al., 2011], which are important determinants of Rs. Greenness
VIs not only provide measures of the amount or condition of vegetation within a pixel but also are good
indicators of plant photosynthesis [Gitelson et al., 2006; Rahman et al., 2005; Sims et al., 2006; Wu et al., 2010;
Wylie et al., 2003]. Thus, VIs may be used tomodel Rs due to their possible relationships with substrate supply to
Rs. LSTand surface reflectance products from theModerate Resolution Imaging Spectroradiometer (MODIS) are
increasingly being used to study various ecosystem processes. Moreover, both products have been cross
compared or validated over a widely distributed set of locations and time periods [Fang et al., 2004; Hulley and
Hook, 2009; Liang et al., 2002; Moncet et al., 2011; Wan, 2008].

Soil moisture greatly determines the temporal and spatial changes of Rs by affecting the activity of microbes
and enzymes and regulating photosynthetic substrate supply and oxygen availability [Balogh et al., 2011;
Cook and Orchard, 2008; Jassal et al., 2008; Li et al., 2008]. However, despite the importance of soil moisture,
accurate assessment is difficult because of strong spatial and temporal variability in topography, soil type,
and land use [Cosh et al., 2004; Famiglietti et al., 2008; Verstraeten et al., 2006]. The accuracy of soil moisture
estimation from remotely sensed passive microwave observations varies greatly over different land cover
types because of signal attenuation by vegetation [Bolten et al., 2003] and is significantly degraded over areas
of vegetation water content that is greater than approximately 5 kgm�2 [Njoku and Chan, 2006]. Thus, the
application of microwave remote sensing in estimating soil moisture over forest areas is limited by the effect
of high-vegetation water content. However, remote sensing data, when combined with a land surface model,
could provide estimates of soil moisture with higher spatial and temporal resolutions and less error than
either remotely sensed data or model simulation separately [Houser et al., 1998; Huang et al., 2008]. Integrating
surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer–EOS (AMSR-E)
into a modified Palmer soil moisture model provides reliable estimation of root zone soil moisture and has
been successfully used at regional scale [Bolten et al., 2010].

Previous studies conducted in various types of forest ecosystems have reported a considerable challenge in
deriving spatial patterns of soil respiration because of changes in soil temperature, moisture, and substrate
supply [Davidson et al., 1998; Högberg et al., 2001; Gaumont-Guay et al., 2006]. At large spatial scales, these factors
affecting soil respiration are difficult to observe with in situmeasurements due to their large spatial and temporal
variability in forest ecosystems. Thus, the application of spatial data products in modeling soil respiration will
greatly facilitate estimation of soil respiration over a large spatial scale. The primary objective of this study was to
determine if the spatial data products previously mentioned (i.e., LST, VIs, and root zone soil moisture) allow for
the estimation of Rs at a deciduous broadleaf forest site. As vegetation phenology at the study site may have a
great impact on Rs, we first clarified the main driving factors for Rs variations during growing and nongrowing
seasons. Then, we separately modeled seasonal Rs using different statistical models for each phenology stage
and examined the feasibility of these Rs models driven by spatial data products at the deciduous forest site.

2. Materials and Methods
2.1. Study Site

The Missouri Ozark AmeriFlux site (38.7441°N and 92.2°W, 219m) is located in central Missouri, USA. The
vegetation type is a temperate deciduous broadleaf forest, dominated by second-growth upland oak-hickory
forests [Pallardy et al., 1988]. Major tree species include white oak (Quercus alba, Quercus muehlenbergii, and
Quercus stellata), red oak (Quercus velutina, Quercus rubra, Quercus shumardii, and Quercus imbricaria), Fraxinus
(Fraxinus americana and Fraxinus quadrangulata), Carya (Carya ovata, Carya cordiformis, Carya tomentosa and
Carya texana), and Acer saccharum. The average rooting depth at this site is over 1m. Root dry mass decreased
exponentially with the increase of soil depth, and approximately 90% root systemmass concentrated at the depth
of 0 cm to 40 cm (data not shown). The canopy height is approximately 24m. Soils aremainlyWeller silt with rocky
thin soil covering. The soil depth varies spatially. At some places, soil depth can be as deep as 2m. At other
locations, soil depthmay be just 0.5m. The climate is warm, humid, and continental withmean July temperature
at 25.2°C. Annual mean precipitation is about 940mm, and annual mean temperature is about 13.5°C. Droughts
commonly occur between July and September. Gu et al. [2006] provide detailed descriptions of the study site.
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2.2. Soil Respiration, Soil Temperature, and Soil Moisture Measurements

Continuous hourly measurements of Rs, soil temperature, and soil moisture were from the Missouri Ozark
AmeriFlux site in 2004 to 2007 (http://ameriflux.ornl.gov/). Rs was measured with eight automated soil
chambers [Edwards and Riggs, 2003]. The installments of the eight soil chambers consider the spatial
heterogeneity (such as soils and vegetation); thus, data from these chambers can be averaged to produce
representative efflux data set for the site. Sampling at one chamber took 7min to 8min so that a sampling
cycle of eight chambers was about 1 h. The resulted time series was at hourly time step with only a few
measurement gaps because of freezing tube in winter, instrument failure, and site work. Moreover, the hourly
mean Rs should be considered as a spatial average rather than a temporal average.

Soil temperature and soil moisture were continuously measured near the automated chamber system at
multiple depths in the deciduous forest site. Half-hourly soil temperature was measured at depths of 2, 4, 8,
16, 32, 64, and 128 cm using the Atmospheric Turbulence and Diffusion Division Probe with YSI Thermistors.
Soil moisture was measured at depths of 10, 20, 30, 40, 60, and 100 cm using the Delta–T PR1/6 Profiler
capacitance probe. The measurements of soil temperature andmoisture were actually performed at different
locations at the study site. They appeared fairly homogeneous from varying locations. Thus, we can use these
soil temperature and moisture profiles measured near the automated chamber system to represent their
values at the observation scale of the flux tower.

To conform to the 8 day period of MODIS data, the 8 day samples of Rs, soil temperature, and soil moisture at
different depths were averaged and the means were used in this study. Also, note that the in situ measured
data include all days (both sunny and cloudy), whereas the MODIS data include only clear days. Thus, short-
term (hours to days) variability has been removed, and this analysis looks only at long-term seasonal
variability. Vegetation greenness remains basically constant over 1 week [Sims et al., 2006], and the major
patterns of remotely sensed land surface temperature are consistent with measured surface temperature at a
weekly scale [Benali et al., 2012; Jin and Dickenson, 2010]. Therefore, although only data from sunny days were
used from MODIS and all data from in situ measurements were used, this methodology probably has little
influence on the results.

2.3. Spectral Vegetation Indices Calculation

MODIS 8 day surface reflectance product (MOD09A1, 500m) at the study site were downloaded (http://
ladsweb.nascom.nasa.gov/data/search.html) to calculate VIs for GPP estimation. Each MOD09A1 pixel
contains the best possible observation during an 8 day period as selected based on high observation
coverage, low view angle, the absence of clouds or cloud shadow, and aerosol loading. Based on the
geolocation information (latitude and longitude) of the study site, the pixel containing the site from the
MOD09A1 product was extracted. The same data processing was also applied to the following spatial data
products (i.e., MODIS LST, root zone soil moisture, and MODIS phenology products). Table 1 shows the
three VIs (i.e., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and green
chlorophyll index (CIgreen)) calculated from the surface reflectance product. Under ideal conditions, changes in
vegetation index (VI) time series indicate changes in vegetation conditions. However, disturbances in these
time series are always observed, which are caused by cloud contamination, atmospheric variability, and
bidirectional effects. The Savitzky-Golay filter efficiently reduces noises in the VI time series caused primarily
by cloud contamination and atmospheric variability [Chen et al., 2004; Savitzky and Golay, 1964]. In this study,
a Savitzky-Golay filter was used to obtain high-quality VI time series.

Table 1. Vegetation Indices Calculated From MODIS 8 Day Surface Reflectance Product at the Temperate Deciduous
Forest Sitea

Vegetation Index Formulation Reference

Normalized difference vegetation index NDVI ¼ ρnir�ρred
ρnirþρred

Rouse et al. [1974]; Gamon et al. [1995]

Enhanced vegetation index EVI ¼ 2:5� ρnir�ρred
ρnirþ 6�ρred�7:5�ρblueð Þþ1 Huete et al. [2002]

Green chlorophyll index CIgreen ¼ ρnir
ρgreen

� 1 Gitelson et al. [2005]

aReflectance of green, blue, red, and near-infrared (NIR) band in MOD09A1 product are ρgreen, ρblue, ρred, and
ρnir, respectively.
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2.4. Land Surface Temperature Data Acquisition

MODIS 8 day LST product (MOD11A2 from Terra MODIS) with 1000 m spatial resolution was downloaded at
the study site (http://ladsweb.nascom.nasa.gov/data/search.html). The MOD11A2 product is composed from
the daily 1 km LST product and stored on a 1 km Sinusoidal grid as the average values of clear-sky LSTs during
an 8 day period. We used only data described as good data quality in the data quality layer of this MOD11A2
product. We averaged daytime and nighttime LST (mean LST) from the MOD11A2 for each 8 day period, and
the mean LST was used for the following analysis.

2.5. Root Zone Soil Moisture Data Acquisition

The root zone soil moisture product (http://reverb.echo.nasa.gov/reverb/) is derived from the assimilation of Land
Parameter Retrieval Model/AMSR-E/NASA EOS Aqua surface soil moisture retrievals into a two-layer Palmer
water balance model, using a one-dimensional, 30-member ensemble Kalman filter. Root zone soil moisture is
defined as the two-layer Palmer water balance model predicted soil moisture. The depth of the root zone
depends on the available water capacity (AWC) which is calculated using soil texture, depth to bedrock, and soil
type derived from the Food and Agriculture Organization (FAO) digital soil map of the world available from the
FAO at http://www.fao.org/ag/agl/lwdms.stm#cd1. The range of root zone is typically from 50 cm to 290 cm,
depending on the AWC for the region of interest. Detailed descriptions of the method can be found in Bolten
et al. [2010]. The data set with global coverage covers the period from June 2002 to December 2010 at a spatial
resolution of 25 km and a temporal resolution of 1day. Eight day averaged root zone soil moisture was used in
this study. For this analysis, our aimwas to see if the root zone soil moisture product can be used as a surrogate of
in situ measured soil moisture for Rs estimation. We did not have the aim or possibility to modify this product.

2.6. Phenological Data Acquisition

In this study, MODIS phenology product (MCD12Q2, 500m) was used to divide phenological phases for data
analysis (http://ladsweb.nascom.nasa.gov/data/search.html). MCD12Q2 characterizes vegetation growth
cycles using four transition dates estimated from time series of MODIS EVI data: (1) greenup: the date of onset
of EVI increase; (2) maturity: the date of onset of EVI maximum; (3) senescence: the date of onset of EVI
decrease; and (4) dormancy: the date of onset of EVI minimum [Ganguly et al., 2010]. Using the four transition
dates as a basis for separating phenological periods, we partitioned the entire study period into five
phenological periods (Table 2), namely, spring dormant period, early growing period, midgrowing period,
late-growing period, and winter dormant period.

2.7. Plant Photosynthesis Data Acquisition

GPP, which quantitatively represents plant photosynthesis, was acquired from America Fluxnet (http://public.
ornl.gov/ameriflux/). GPP values were obtained by summing NEE and ecosystem respiration (Re) with eddy
covariance measurements at the study site. Daytime ecosystem respiration (Re) is estimated from night NEE-
temperature relationship. Nighttime NEE-temperature relationship could be problematic because of insufficient
turbulent air mixing during nights which produces gaps in eddy covariancemeasurement. Marginal distribution
sampling method is used for gap filling [Reichstein et al., 2005]. Incident photosynthetically active radiation
(PARin) was also measured at the eddy covariance tower.

Data acquisition would be simpler andmore direct if we could estimate GPP using spectral VI. Earlier studies have
shown good relationships between VIs (e.g., NDVI, EVI, and CIgreen) and vegetation productivity when the data

Table 2. The Phenological Periods Defined byMODIS Phenology Product (MCD12Q2) at the Temperate Deciduous Forest
Site (Units: Day of Year)a

Phenology Periods 2004 2005 2006 2007

Spring dormant period 1–73 1–71 1–72 1–63
Early growing period 74–154 72–135 73–143 64–157
Midgrowing period 155–191 136–271 144–300 158–200
Late-growing period 192–323 272–325 301–322 201–340
Winter dormant period 324–365 326–365 323–365 341–365

aItalics mark means that the data during the spring dormant period and early growing period of 2004 are not used in
our analysis, because there is no ground observation data during the two periods at the temperate deciduous forest site.
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were integrated over the growing season [Gitelson et al., 2006; Rahman et al., 2005; Sims et al., 2006; Wylie et al.,
2003]. In this study, we examined the relationships between simple greenness VIs and GPP and used the VI that
best correlated with GPP to estimate Rs. In addition, short-term fluctuations of environmental stresses (e.g.,
photosynthetically active radiation, temperature, humidity, soil moisture, etc.) could induce extreme variations in
GPP, whereas the VIs representing vegetation greennesswill fail to detect a decrease in GPP related to the types of
stressors mentioned. The 8 day averaged GPP was used for our analysis, which removed the effects of short-term
(minutes to hours) variability in environmental factors to some extent. However, for comparison, the relationships
between GPP and the combination of VI and PARin (i.e., VI × PARin) [Peng and Gitelson, 2011] or the combination of
VI and LST (the temperature and greenness model (i.e., TG model)) [Sims et al., 2008] were analyzed.

2.8. Methods for Soil Respiration Estimation

Various climate conditions have been found to control seasonal variability of Rs, of which soil temperature
and soil moisture are often the most influential. The relationship between Rs and soil temperature is usually
modeled by a simple exponential function [Gaumont-Guay et al., 2006; Liu et al., 2006; Lloyd and Taylor, 1994].
A general form of this function is

Rs ¼ B0e
B1T (1)

However, in this temperate deciduous forest, soil moisture was also observed to be an important factor
affecting seasonal patterns of Rs [Gu et al., 2008]. We therefore used a model with soil temperature and soil
moisture as driving variables to model seasonal Rs. Similar models have been used previously in
Mediterranean ecosystems [Tang et al., 2005b; Vargas and Allen, 2008].

Rs ¼ B0e
B1T eB2θþB3θ2 (2)

Moreover, we observed significant effects of plant photosynthesis (i.e., gross primary production (GPP)) on Rs
during the growing season at the study site. In addition to equation (2), which adequately described Rs during
nongrowing season, we developed a model (equation (3)) simulating Rs at growing season. In equation (3),
we simply assumed that one part of Rs is purely driven by biotic factors (e.g., GPP) and the other by abiotic
ones (e.g., soil temperature and moisture), similar to the report of Migliavacca et al. [2011].

Rs ¼ B0e
B1T eB2θþB3θ2 þ B4GPP þ B5 (3)

where Rs (μmol CO2 m
�2 s�1) is the soil respiration, T (°C) the soil temperature, and θ (m3m�3) the volumetric soil

moisture. The quadratic-type form of θ indicates that soil moisture has two opposite effects on Rs. B0, B1, B2, B3, B4,
and B5 are the model parameters. These parameters can vary with seasonal variations in decomposition rates of
soil labile carbon [Gu et al., 2004]. To reduce this influence, we first partitioned the entire study period into five
different phenological periods and separately modeled Rs using equations (1) to (3) for each phenological stage.

To test the feasibility of using spatial data products in estimating Rs, we used remotely sensed land surface
temperature and spectral vegetation index as a proxy indicator of soil temperature and GPP, respectively, and
root zone soil moisture, from assimilation of AMSR-E and a land surface model, as a surrogate of soil moisture
to estimate Rs based on equations (1) to (3).

2.9. Statistical Analysis

To quantify the temporal variability in Rs, soil temperature, soil moisture, and GPP for each phenological period,
the coefficient of variation (CV) was calculated as follows:

CV ¼ standard deviation=mean� 100% (4)

The Marquardt–Levenberg algorithm was used to determine the model parameters. Model accuracy and
performance were evaluated by three statistics: coefficient of determination (R2), root-mean-square error
(RMSE), and Akaike’s information criterion (AIC) [Richardson et al., 2006]. The best model had the highest R2

and lowest RMSE and AIC based on the three metrics.

To clarify themain factors affecting Rs during different phenological periods, we first examined the performances
of the models (equations (1) to (3)) using in situ measured soil temperature, soil moisture, and GPP as driving
factors. Then, to see if the spatial data products (i.e., mean LST, root zone soil moisture and VIs) could be used
to estimate Rs, we examined the relationships between these data products and in situ measured biotic or
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abiotic factors (i.e., soil temperature, soil moisture, and GPP). On this basis, we analyzed the performances of
the models entirely driven by the spatial data products.

In this study, multicollinearity diagnostics were conducted after the establishment of soil respiration
models. Multicollinearity diagnostics serve to detect collinearity among the predictive variables used for
estimating soil respiration (equations (2) and (3)). The presence of collinearity will cause the model
parameters to differ greatly from their true values, even to the point of having incorrect signs. Therefore,
the collinearity statistics need to be examined when the predictive variables are highly intercorrelated.
To determine if multicollinearity existed in our data set, Pearson correlation and variance inflation factor
(VIF) were evaluated on all the predictive variables for estimating soil respiration in five different phenological
periods. Generally, the lower the Pearson correlation coefficient and VIF are, the weaker is themulticollinearity
problem among the predictive variables. All statistical analyses were conducted using the Statistical Package
for the Social Sciences (SPSS) 13.0 (SPSS, Chicago, IL, USA).

3. Results
3.1. Seasonal Variation of Soil Respiration

Similar to the seasonal variations of soil temperature and GPP, Rs showed an obvious seasonal pattern at the
deciduous forest site during 2004 to 2007 (Figure 1). The maximum 8 day mean Rs usually occurred at the
midgrowing period and corresponded to the maximum values of soil temperature and GPP (Figure 1 and
Table 3). However, in response to the seasonal drought at the midgrowing season of 2005, Rs decreased
dramatically with a significant decrease in soil moisture (Figure 1). Mean Rs at the deciduous forest site ranged
between 0.64 and 4.14μmol CO2 m

�2 s�1 at the five different phenological periods (Table 3). Furthermore, Rs
showed obviously larger temporal variations at early and late-growing periods than at other phenological
periods with a CV of 54% and 57%, respectively. During nongrowing season (i.e., spring or winter dormant
periods), the CV of Rs was small and coincident with the small CV of soil moisture (Table 3).

Figure 1. Seasonal patterns of (a–d) soil respiration (Rs), (e–h) soil temperature at 4 cm depth (Ts4), (i–l) soil moisture at 10 cm depth (θ10), and (m–p) gross primary
production (GPP) at the Missouri Ozark AmeriFlux site in 2004–2007. All data are 8 day mean and showed in 8 day interval. Error bars represent 1 standard error.
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For the modeling of Rs, we used soil temperature at 4 cm depth (Ts4) and soil moisture at 10 cm depth (θ10), as
the soil temperature or soil moisture at other depths were not able to explain more of the seasonal variances
in Rs. During the spring and winter dormant periods, the best model to explain temporal variations in Rs at the
deciduous forest site, based on the AIC, was a model depending on Ts4 alone. However, addition of θ10 to the
model slightly increased the R2 value and reduced the RMSE (Table 4), suggesting that soil moisture also had
an influence on Rs at this deciduous forest site in the nongrowing season.

For the early growing period, the model depending on Ts4 explained most of the seasonal variations in
Rs, and a further addition of θ10 and GPP only slightly increased the explanation power (Table 4). By
contrast, soil temperature played a less important role in regulating seasonal variations in Rs than soil
moisture at the midgrowing and late-growing periods, which indicated that soil moisture was an
important factor affecting Rs during the two phenological periods. Furthermore, the addition of GPP to
the model considering soil temperature and soil moisture greatly increased the R2 value and reduced
the RMSE and AIC (Table 4) demonstrated that plant photosynthesis also had an important influence on
Rs at the deciduous forest site during the midgrowing and late-growing periods. The importance of GPP
in the modeling of Rs was particularly evident for the midgrowing period with an obvious increase of
R2 from 0.53 to 0.90 (p< 0.0001, Table 4). Overall, the best model to explain seasonal variations in Rs
during the midgrowing and late-growing periods at the deciduous forest site was a function of soil
temperature, soil moisture, and GPP when comparing all three model performance indicators (R2, RMSE,
and AIC, Table 4).

3.2. Spatial Data Used for Soil Respiration Estimation
3.2.1. Land Surface Temperature Data From MODIS
To clarify if the mean LST from MODIS was able to represent soil temperature for Rs estimation at our study site,
we analyzed the seasonal changes inmean LSTand soil temperaturemeasured at different depths (Figure 2). We
did not show themeasured soil temperature at all depths, because the seasonal trends shown in Figure 2 can be
broadly extended to the other depths of soil temperature. Both the mean LST and the in situ measured soil
temperature at four different depths showed strong seasonality. The mean LST and the in situ measured soil
temperature reached amaximum in the middle of the growing season andwere low at the nongrowing season.

Table 3. Seasonal Characteristics of Soil Respiration (Rs, μmol CO2m
�2 s�1), Soil Temperature at 4 cmDepth (Ts4, °C), Soil

Moisture at 10 cm Depth (θ10, m
3m�3), and Gross Primary Production (GPP, gC m�2 day�1) at the Temperate Deciduous

Forest Site From 2004 to 2007 for Five Different Phenological Periods

Mean Minimum Maximum Coefficient of Variation (CV, %)

Spring Dormant Period
Rs 0.64 0.39 1.16 27
Ts4 4.93 1.28 9.59 43
θ10 32.92 26.22 40.16 16

Early Growing Period
Rs 2.44 0.70 5.02 54
Ts4 13.69 6.70 20.04 29
θ10 32.65 20.32 42.95 20
GPP 4.14 0.50 12.00 83

Midgrowing Period
Rs 4.14 1.44 6.48 33
Ts4 20.83 10.65 25.57 16
θ10 23.23 11.57 41.03 29
GPP 7.32 0.55 14.32 45

Late-Growing Period
Rs 2.45 0.72 6.25 57
Ts4 16.73 6.85 25.27 33
θ10 24.33 15.13 38.64 26
GPP 4.39 0.56 14.38 88

Winter Dormant Period
Rs 0.71 0.47 1.07 23
Ts4 5.84 3.49 9.62 31
θ10 35.33 28.22 40.10 12
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Moreover, soil temperature at greater
depth showed obvious time hysteresis
compared with the soil temperature close
to the surface (Figure 2). Throughout
the study period, mean LST best captured
the seasonal change of surface soil
temperature (i.e., Ts4), while mean LST
exhibited larger values and variations
than Ts4 during the midgrowing period
of 2004 to 2007. Furthermore, mean
LST showed the best correlation with
Ts4 (R2 = 0.97, p< 0.0001) than soil
temperature at other depths (Figure 3).
3.2.2. Root Zone Soil Moisture
The in situ measured soil moisture and
modeled root zone soil moisture during
the study period at the deciduous forest
site were shown in Figure 2. As expected,
high-frequency variations were seen in
the time series of in situ measured soil
moisture at 10, 20, and 30 cm depths
and low-frequency variations at 100 cm
depths. Overall, root zone soil moisture
showed approximate values and a
similar variation pattern with soil
moisture at intermediary depths (i.e.,
40 cm and 60 cm, Figure 2). Linear
regression analysis also showed that
root zone soil moisture closely tracked
the seasonal dynamics of soil moisture
at 40 cm depth with a coefficient of
determination of 0.73 (p< 0.0001). With
the depth increase or decrease, the
correlations between in situ measured
soil moisture and root zone soil moisture
greatly reduced (Figure 4).

For the root zone soil moisture, the
assimilation of AMSR-E surface soil
moisture retrievals into the Palmer
model improves the root zone soil
moisture estimation, especially in bare
soil and low-vegetation-covered regions.
At densely vegetated areas (i.e., forest),
AMSR-E performance is not expected to
be optimal because of the vegetation
density limitations. Thus, over these
regions, the soil moisture estimates will
rely more on the precipitation and
temperature data than on the assimilated
remotely sensed soil moisture product.
Our study site is a forest area, good
relationship between root zone soil
moisture and soil moisture measured atTa
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40 cm depth (R2 = 0.73) was observed. This good relationship indicated that the root zone depth
predicted by the Palmer model at the study site was about 40 cm, which was reasonable considering that

most root system mass concentrates
at the depth of 0 cm to 40 cm and the
range of root zone depth in the root
zone soil moisture product typically
ranges from 50 cm to 290 cm (from
private communication with the
producers of root zone soil moisture
product).
3.2.3. Spectral Vegetation Index
Throughout the growing season of
2004 to 2007 at the deciduous forest
site, EVI showed slightly better
relationship with GPP than NDVI and
CIgreen (Table 5). Moreover, combining
VI and PARin did not provide obvious
higher accuracy for estimating GPP
than using VIs alone. Integrating LST
and EVI (TG model) [Sims et al., 2008]
produced better correlation with GPP
than either the EVI alone or the
combination of EVI and PARin, but the

Figure 3. Relationships between mean LST and in situ measured soil
temperature at the 4 cm, 16 cm, 64 cm and 128 cm depths at the
deciduous forests site in 2004–2007. Mean LST is the averaged day-
time and nighttime land surface temperature from Terra MODIS for
each 8 day period. All relationships were statistically significant at
p< 0.0001 (n = 136).

Figure 2. Seasonal courses of 8 day mean land surface temperature (mean LST): (a–d) soil temperature at 4 cm, 16 cm, 64 cm, and 128 cm depths and (e–h) soil
moisture at root zone 10 cm, 20 cm, 30 cm, 40 cm, 60 cm, and 100 cm depths, precipitation (Figures 2e–2h, right axis) at the temperate deciduous forest site in
2004–2007. Only the mean for each 8 day period is presented for clarity.
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improvement was small (Table 5). Thus, we selected EVI as a surrogate of GPP for Rs estimation as the
single VI was simpler than using the combination of LST and VI (i.e., TG model) [Sims et al., 2008].

3.3. Estimating Soil Respiration Using Spatial Data Products

When comparing all three model performance indicators (R2, RMSE, and AIC), the models based on mean LST or
the combination of mean LST and root zone soil moisture showed similar performances to the model entirely
based on in situ measured Ts4 or the combination of Ts4 and θ10 at the deciduous forest site during spring and
winter dormant periods (Table 4). In the early growing period, comparedwith themodel depending on themean
LSTalone, inclusion of root zone soil moisture to model Rs did not obviously improve the fitting accuracy. Further
addition of the plant photosynthesis-related VI (i.e., EVI) explained an additional 9% of the seasonal variation in Rs
at the study site (Table 4). Thus, based on the spatial data products, the best model to describe seasonal pattern
of Rs in the early growing period was the model based on mean LST, root zone soil moisture, and EVI (Table 4).

During the midgrowing and late-growing periods, the model based on both the mean LST and root zone soil
moisture showed much better explanation capacity for the seasonal variations in Rs than the model based on

Table 5. Determination Coefficients (R2) and Root-Mean-Square Error (RMSE) of Linear Relationships Between Gross
Primary Production (GPP) and Variables Used for GPP Estimation at the Temperate Deciduous Forest Site During the
Growing Season of 2004–2007a

NDVI EVI CIgreen NDVI × PARin EVI × PARin CIgreen × PARin TG Model

R2 0.66 0.71 0.70 0.66 0.72 0.73 0.75
RMSE 2.45 2.26 2.28 2.45 2.21 2.20 2.09

aNDVI is normalized difference vegetation index, EVI is enhanced vegetation index, and CIgreen is green chlorophyll
index. PARin is incident photosynthetically active radiation. Sims et al. [2008] give detailed information about the TG
model. All the relationships are statistically significant at p< 0.0001 (n=105).

Figure 4. (a–f ) Relationships between root zone soil moisture and in situ measured soil moisture at 10 cm, 20 cm, 30 cm,
40 cm, 60 cm, and 100 cm depths at the temperate deciduous forests site in 2004–2007. All relationships were statistically
significant at p< 0.0001 (n=136).

Journal of Geophysical Research: Atmospheres 10.1002/2013JD020515

HUANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6402



the mean LST, which was similar to the results obtained in section 3.1. Further adding EVI to the model
depending on mean LST and root zone soil moisture made no obvious improvement at the deciduous
forest site in the midgrowing and late-growing periods, which appeared to contradict the results in
section 3.1, especially for the midgrowing period. However, the models based on the mean LST, root zone
soil moisture, and EVI explained 76% and 90% of the seasonal variation in Rs for midgrowing and late-growing
periods, respectively (Table 4), demonstrating the possibility of estimating Rs based on spatial data products at
the study site.

3.4. Multicollinearity Diagnostics

In this study, the largest Pearson correlation coefficient among predictive variables used for estimating Rs
(i.e., Ts4, θ10, GPP, mean LST, root zone soil moisture, and EVI) is 0.78 (Appendix A). Therefore, in accordance
to Hair et al.’s [1979] criterion that for variables to qualify for multicollinearity should have a coefficient of
correlation 0.8 or higher, the problem of multicollinearity does not exist in our data set. The collinearity
diagnostics using VIF method also confirmed that multicollinearity was not a problem to distort our regression
analysis. The reason was that the highest VIF in our statistical analysis was only 4.32 (Appendix B), a value well
within accepted standards [York et al., 2003].

4. Discussion
4.1. Estimating Soil Respiration Using Spatial Data Products at the Deciduous Forest Site

Our results suggested that simple models based entirely on spatial data products have the potential to
estimate Rs at the temperate deciduous forest site. This result provides the foundation for the development
of Rs models aimed to obtain spatial distributed Rs. However, this approach will need large amounts of soil
respiration data to constrain parameters. The same regression coefficients obtained at this study site would
not work for other sites with different climate, soil, and vegetation.

Through modeling Rs using biotic and abiotic factors (Table 4), we found that the controlling factors of Rs
changed from the growing to nongrowing seasons. Thus, modeling Rs according to phenological periods
was necessary, which was consistent with the findings of Janssens and Pilegaard [2003] and Shi et al. [2006].
During the nongrowing season, the models based on the mean LST and root zone soil moisture, which to
some extent tracked the seasonal variations of soil temperature and soil moisture, explained most of the
seasonal dynamics of Rs at the deciduous forest site in spring and winter dormant periods with R2 values of
0.82 and 0.72, respectively.

As the growing season progressed, the contribution of plant photosynthesis to total Rs may increase by
enhanced C substrate supply for plant roots and soil microbes in rhizoshpere [Bahn et al., 2008; Martin et al.,
2012; Moyano et al., 2007; Sampson et al., 2007]. Thus, adding GPP to the model based on Ts4 and θ10
improved the explanatory ability of the Rs model in the early, midgrowing, and late-growing periods (Table 4).
When comparing R2, RMSE, and AIC, the models entirely driven by spatial data products (i.e., mean LST, root
zone soil moisture, and photosynthesis-related EVI) showed similar performances to the models based on in
situ measured data (Ts4, θ10, and GPP) during the growing season, except for the midgrowing period. This
suggested that Rs modeling was feasible by using spatially distributed data products.

4.2. Soil Respiration Modeling in the Midgrowing Period

During themidgrowing period, themodel based on the in situmeasured Ts4, θ10, and GPP showedmuch higher
explanation capacity for the seasonal variation of Rs (R

2 = 0.90, p< 0.0001) than the models based on spatial
data products (i.e., mean LST, root zone soil moisture, and EVI; R2 = 0.76, p< 0.0001) at the deciduous forest site.
The reason may be due to the use of root zone soil moisture instead of surface soil moisture (i.e., θ10) in the
modeling of Rs. Surface soil moisture (i.e., θ10) is highly variable because of the influence of atmospheric
conditions (rain, wind, and solar radiation), whereas root zone soil moisture presents lower variability than
surface soil moisture [Anguela et al., 2008; Rebel et al., 2012]. For example, θ10 had better reaction to
precipitation events than other deeper soil moisture and root zone soil moisture at the deciduous forest site
(Figure 2). Therefore, using the surface soil moisture (θ10) as a driving factor of Rs may explain more temporal
variations in Rs, attributed to the effects of extreme variations in atmospheric conditions, than root zone soil
moisture during the midgrowing period. With the occurrence of droughts at the study site in the midgrowing
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season [Gu et al., 2006; Yang et al.,
2010], precipitation events
following droughts often led to
unusually large Rs values
(Figures 1 and 2). This result may
be attributed to the lack of water
leading to “bursts” when
conditions turned more favorable
for root growth and microbial
respiration. Similar Rs responses
following the precipitation events
have also been observed in
previous studies [Fierer and
Schimel, 2003; Irvine and Law,
2002; Misson et al., 2006; Vargas
and Allen, 2008].

We also observed that the
inclusion of photosynthesis-related

factor (EVI) in themodel based onmean LSTand root zone soil moisture did not improve the explanation of the
seasonal variation in Rs at the study site during the midgrowing period. This insufficiency may be accounted by
the direct link between plant photosynthesis and root zone soil moisture during this time period. In vegetated
fields, growth and productivity of vegetation is primarily determined by water availability in the root zone [Rao
et al., 1993]. Under semiarid or arid conditions, the change of root zone soil moisture can be almost
instantaneously reflected by vegetation through biophysical process (e.g., plant photosynthesis) [Schnur et al.,
2010; Wang et al., 2007]. However, the capacity of plant photosynthesis to rapidly respond to variations in
surface soil moisture is limited under drought conditions, especially at forest sites which can access water in
deeper soil [Farooq et al., 2009;Huang and Fu, 2000]. In the study area reported in this paper, moderate to severe
droughts commonly occur in the midgrowing season [Gu et al., 2006; Yang et al., 2010]. Through regression
analysis, we also observed significant correlation between root zone soil moisture and GPP at this deciduous
forest site during the midgrowing period (R2 = 0.43, p< 0.0001, Figure 5). Therefore, adding photosynthesis-
related EVI to the model based on the mean LST and root zone soil moisture did not make an improvement in
estimating Rs during the midgrowing period.

4.3. Spatial Scales of Data Used for Estimating Soil Respiration

In this study, the spatial scales of data are widely apart. For example, the spectral vegetation indices and
mean LST from MODIS products are at a spatial resolution of 500m and 1000m, respectively, while root zone
soil moisture is at a spatial resolution of 25 km. As the spatially averaged Rs, soil temperature, and soil
moisture represented the observation scale of the flux tower, the MODIS products (i.e, VIs and LST) and in situ
measured data (i.e., Rs, soil temperature, soil moisture, and GPP) can be considered to be consistent in spatial
scale. The study of Xiao et al. [2010] also showed that the spatial scale of MODIS products (500m and 1000m)
can correspond to the observation scale of eddy flux tower at the Missouri Ozark AmeriFlux site.

The question now was if the coarse-scale root zone soil moisture data (25 km) was a reasonable input for Rs
estimation at the observation scale of the flux tower. Root zone soil moisture andmeasured soil moisture at the
flux tower do not necessarily have to agree as they are a result of processes at a different spatial scale. However,
despite the differences in spatial scale, both showed consistency in terms of temporal dynamics (e,g., trend) and
hence have a similar response to rainfall if the rainfall was equally distributed [Rebel et al., 2012]. The statistical
regression analysis also showed that the root zone soil moisture at a coarse scale of 25 km explained the
seasonal variations of in situ measured soil moisture, especially for the 40 cm depth soil moisture (Figure 4). In a
semiarid region of southwestern USA, soil moisture values of the same depth are highly correlated (r=0.53 to
0.85) among sites as far as 150 km apart [Schnur et al., 2010]. At the Grand Morin watershed (France), Anguela
et al. [2008] also observed that root zone soil moisture from integrating remotely sensed surface soil moisture
observations into a two-layer water model, despite of the 25×25 km2 scale, produces good quality and is well

Figure 5. Relationship between root zone soil moisture and gross primary
production (GPP) at the temperate deciduous forest site during the midgrowing
period of 2004–2007. The data used in this figure is the 8 day mean (n=45).
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correlated with soil moisture from in situ time domain reflectometry measurements (local scale) and a
hydrological model (8× 8 km2 scale).

5. Conclusions

This study investigated the feasibility of estimating Rs using spatial data products, including mean LST,
spectral vegetation index, and root zone soil moisture, at a deciduous forest site located in Midwest USA.
Results showed that the models based on mean LST and root zone soil moisture explained most of the
nongrowing season (i.e., spring andwinter dormant periods) variations in Rs. Themodels depending onmean LST,
root zone soil moisture, and photosynthesis-related EVI showed high accuracy for Rs estimation with R2 of 0.96
and 0.90 for early and late-growing periods, respectively. During midgrowing period, common occurrence of
droughts led to usually large Rs values following precipitation events. Under this condition, surface soil moisture
had better response to the extreme variations in Rs than root zone soil moisture during themidgrowing period at
the deciduous forest site. Therefore, the model entirely based on spatial data products (i.e., mean LST, root zone
soil moisture, and EVI) showed lower explanation capacity (R2=0.76 versus R2=0.90) for seasonal variation of Rs
than themodel based on in situmeasured data (i.e.,Ts4, θ10, and GPP). Considering that the factors affecting Rs are
complex and diverse at the forest site, including environmental variables, biotic factors, human activities, and site
characteristics, the fitting accuracy of the model based on spatial data products during the midgrowing period at
the study site is still acceptable. Themethodology holds promise for applying spatial data products from remotely
sensed observations and the assimilation of remote sensing data into a land surface model to estimate Rs at the
regional and global scales. New releases of spatial data products with higher quality and spatial resolution will
provide improved Rs estimation that can be used to enhance the global assessments of carbon budgets.

Appendix A: Pearson’s Correlation Coefficient

Tables A1 and A2 described the results of multicollinearity diagnostics for the predictive variables used for
estimating soil respiration (Rs) at the temperate deciduous forest site from 2004 to 2007 at five different
phenological periods. The largest Pearson correlation coefficient among the predictive variables used for
estimating Rs is 0.78. Therefore, in accordance to Hair et al.’s [1979] criterion that for variables to qualify for
multicollinearity should have a coefficient of correlation 0.8 or higher, the problem of multicollinearity does
not exist in our data set.

Table A2. Pearson Correlation Coefficient (r) Among Averaged Daytime and Nighttime Land Surface Temperature (Mean LST, °C) From Terra MODIS, Root Zone Soil
Moisture (θr, m

3 m�3), and Enhanced Vegetation Index (EVI) at the Temperate Deciduous Forest Site From 2004 to 2007 at Five Different Phenological Periods

Spring Dormant Period Early Growing Period Midgrowing Period Late-Growing Period Winter Dormant Period

Mean LST θr Mean LST θr EVI Mean LST θr EVI Mean LST θr EVI Mean LST θr

Mean LST 1.00 1.00 1.00 1.00 1.00
θr 0.02 1.00 �0.56 1.00 �0.22 1.00 �0.43 1.00 �0.41 1.00
EVI 0.71 �0.58 1.00 0.71 0.26 1.00 0.78 �0.11 1.00

Table A1. Pearson Correlation Coefficient (r) Among Soil Temperature at 4 cm Depth (Ts4, °C), Soil Moisture at 10 cm
Depth (θ10, m

3m�3), and Gross Primary Production (GPP, gC m�2 day�1) at the Temperate Deciduous Forest Site From
2004 to 2007 at Five Different Phenological Periods

Spring Dormant
Period

Early Growing
Period

Midgrowing
Period

Late-Growing
Period

Winter Dormant
Period

Ts4 θ10 Ts4 θ10 GPP Ts4 θ10 GPP Ts4 θ10 GPP Ts4 θ10

Ts4 1.00 1.00 1.00 1.00 1.00
θ10 �0.16 1.00 �0.16 1.00 �0.38 1.00 �0.76 1.00 0.33 1.00
GPP 0.65 �0.50 1.00 0.23 �0.07 1.00 0.55 �0.35 1.00
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Appendix B: Variance Inflation Factor

Tables B1 and B2 described the results of multicollinearity diagnostics for the predictive variables used for
estimating soil respiration (Rs) at the temperate deciduous forest site from 2004 to 2007 at five different
phenological periods. The collinearity diagnostics using VIF method also confirmed that multicollinearity was
not a problem to distort our regression analysis. The reason was that the highest VIF in our statistical analysis
was only 4.32, a value well within accepted standards [York et al., 2003].
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Table B2. Variance Inflation Factor (VIF) for the Predictive Variables in Soil Respiration Estimation at the Temperate Deciduous Forest Site From 2004 to 2007 at Five
Different Phenological Periodsa

Model
Predictive
Variables

Spring Dormant
Period

Early Growing
Period

Midgrowing
Period

Late-Growing
Period

Winter Dormant
Period

1 Mean LST 1.00 1.46 1.05 1.22 1.20
θr 1.00 1.46 1.05 1.22 1.20

2 Mean LST 2.18 3.14 4.32
θr 1.63 1.67 1.71
EVI 2.26 3.20 3.38

aIn models 1 and 2, soil respiration (Rs, μmol CO2 m�2 s�1) is dependent variable. Using the multicollinearity diagnosis in SPSS software, we calculated the
variance inflation factor (VIF) for predictive variables in models 1 and 2, respectively. Mean LST is the averaged daytime and nighttime land surface tempera-
ture (LST) from Terra MODIS (°C), θr is the root zone soil moisture (m3m�3), and EVI is the enhanced vegetation index for estimating gross primary production
(GPP, gC m�2 day�1). Mean LST and θr are predictive variables for model 1. Mean LST, θr, and EVI are predictive variables for model 2.

Table B1. Variance Inflation Factor (VIF) for the Predictive Variables in Soil Respiration Estimation at the Temperate Deciduous Forest Site From 2004 to 2007 at Five
Different Phenological Periodsa

Model
Predictive
Variables

Spring Dormant
Period

Early Growing
Period

Midgrowing
Period

Late-Growing
Period

Winter Dormant
Period

1 Ts4 1.03 1.03 1.16 2.39 1.12
θ10 1.03 1.03 1.16 2.39 1.12

2 Ts4 1.82 1.22 3.06
θ10 1.41 1.16 2.43
GPP 2.35 1.06 1.46

aIn models 1 and 2, soil respiration (Rs, μmol CO2 m�2 s�1) is dependent variable. Using the multicollinearity diagnosis in SPSS software, we calculated the
variance inflation factor (VIF) for predictive variables in models 1 and 2, respectively. Ts4 is soil temperature at 4 cm depth (°C), θ10 is volumetric soil moisture
(m3m�3) at 10 cm depth, and GPP is gross primary production (gC m�2 day�1). Ts4 and θ10 are predictive variables for model 1. Ts4, θ10, and GPP are predictive
variables for model 2.
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