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Land cover classification of finer resolution remote sensing data is always difficult to acquire high-
frequency time series data which contains temporal features for improving classification accuracy. This
paper proposed a method of land cover classification with finer resolution remote sensing data integrat-
ing temporal features extracted from time series coarser resolution data. The coarser resolution vegeta-
tion index data is first fused with finer resolution data to obtain time series finer resolution data.
Temporal features are extracted from the fused data and added to improve classification accuracy. The
result indicates that temporal features extracted from coarser resolution data have significant effect on
improving classification accuracy of finer resolution data, especially for vegetation types. The overall clas-
sification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for
using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types
have been improved.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Land cover refers to the physical and biological cover over the
earth surface, including water, vegetation, bare soil, wetland,
snow/ice and artificial structures. Land cover patterns reflect the
underlying natural and social processes, thus providing essential
information for modeling and understanding many phenomena
on the earth, including climate change, ecosystem, hydrologic,
atmospheric models and the complex interactions between human
activities and global change (Bounoua et al., 2002; Gong et al.,
2013; Jung et al., 2006; Liang, 2008; Miller et al., 2007; Running,
2008). Therefore, timely and accurate regional and global scales
land cover information is critical and serves as the basis for geosci-
ence and global change studies.

Remote sensing has long been an important and effective
means for monitoring land cover with its ability to quickly provide
large scale and easily available information regarding the spatial
variability of the land surface (Gong et al., 2013; Hansen et al.,
2000; Jia et al., 2014; Liu et al., 2003; Mutanga et al., 2012; Zhou
et al., 2013). Many land cover maps at global and regional scales
have been produced in recent years using remote sensing data,
and the popular products include the University of Maryland land
cover map (Hansen et al., 2000), International Geosphere Biosphere
Programme (IGBP) global land cover dataset (Loveland et al., 2000),
European Commission Joint Research Centre Global land cover for
the year 2000 (Bartholome and Belward, 2005), the MODIS global
land cover products (Friedl et al., 2002), and the finer resolution
global land cover (Gong et al., 2013). However, most of the land
cover products are at coarser spatial resolution except for the finer
resolution global land cover product. Because a substantial propor-
tion of land cover changes have been shown to occur at resolutions
below 250 m (Townshend and Justice, 1988), coarser spatial reso-
lution (refers to data with spatial resolution lower than 250 m in
this study) remote sensing data is not enough for catching the
accurate land cover changes information. Recent advances in med-
ium resolution data acquisition and accessibility make Landsat-like
spatial resolution remote sensing data being a suitable choice for
deriving finer resolution (refers to data with spatial resolution like
Landsat or higher than it in this study) land cover maps.
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Fig. 1. The geographical region of the study area and the background information is
the false color image (R: NIR, G: red, B: green) of Landsat OLI data acquired on May
12, 2013. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Landsat-like resolution remote sensing data with high temporal
resolution is very significant for monitoring land cover, because
temporal or phenological information contained in time series
remote sensing data is very useful for land cover mapping, espe-
cially for vegetation cover classification (Jia et al., 2013; Xiao
et al., 2002). Time series vegetation index (e.g., NDVI and EVI) data
are approved to well descript vegetation growth and the shape of
vegetation growing profiles depicted by time series vegetation
index contain vegetation type information (Brown et al., 2013;
Xiao et al., 2002). However, duo to the frequent cloud contamina-
tion and tradeoff in sensor designs which balance spatial resolution
and temporal coverage, it is difficult to acquire time series high
temporal resolution Landsat-like spatial resolution remote sensing
data (Zhang et al., 2013). Thus, land cover classification using time
series remote sensing data are usually focus on coarser spatial res-
olution data, whereas finer resolution land cover products are usu-
ally obtained from classification of single or fewer temporal
Landsat-like spatial resolution remote sensing data (Gong et al.,
2013). Therefore, it has great potential to improve land cover clas-
sification accuracy if temporal features involved in classifying finer
resolution remote sensing data.

The main issue comes to how to extract temporal information
from time series coarser resolution remote sensing data to improve
land cover classification accuracy of finer resolution single or fewer
temporal remote sensing data. Fusing observation from multiple
sensors with different characteristics is considered as a feasible
way to solve the problem. Several fusion methods have been devel-
oped to generate high temporal resolution Landsat-like surface
reflectance data (Gao et al., 2006; Zhang et al., 2013; Zhu et al.,
2010), but this data is rarely used to assist finer resolution data
for improving land cover classification accuracy. In this study, finer
resolution remote sensing data integrating temporal features from
time series coarser resolution data is investigated for improving
land cover classification accuracy. The specific objective is to inves-
tigate the potential of temporal features from coarser resolution
time series vegetation index data on improving land cover classifi-
cation accuracy of finer resolution remote sensing data.

2. Study area and data

2.1. Study area

Beijing is selected as the study area, which is located between
latitudes 39�260N and 41�030N and longitudes 115�250E and
117�300E, covering an area of approximately 16,800 km2 (Fig. 1).
Beijing belongs to a temperate climatic zone and locates in the
northern extent of the North China Plain. The climate in Beijing
has four distinct seasons with hot and humid summers and cold,
windy, and dry winters. The average annual temperature is
approximately 12 �C and the average annual precipitation is
approximately 664 mm. Beijing is characterized by alluvial plains
in the south and east with hills and mountains dominating the
north, northwest and west regions. The highest point above sea
level in the study area is 2303 m and the lowest is 10 m. The abun-
dant land cover types, including forest, grass, cropland, urban
regions and water, have made land cover classification in Beijing
a representative choice. Furthermore, the complex vegetation com-
position is very suitable to investigate the proposed classification
method integrating finer resolution remote sensing data and time
series coarser resolution data derived temporal features which are
sensitive to vegetation types.

2.2. Landsat data and preprocess

The Landsat 8 satellite was successful launched on February 11,
2013, from Vandenberg Air Force Base in California, providing the
continuity in the Landsat earth observation mission (Lulla et al.,
2013). Operational Land Imager (OLI) on board Landsat 8 was the
main sensor for land cover monitoring, which had nine bands
including the high-resolution panchromatic band. Two Landsat
OLI data (path/row: 123/32 and 123/33) covering the study area
on May 12, 2013 were downloaded from the United States Geolog-
ical Survey (USGS) website (http://glovis.usgs.gov/) for land cover
classification in this study. The quality of the Landsat OLI multi-
spectral data were good and cloud was nearly absent in the
acquired data. In order to further validating the effectiveness of
the proposed method, two Landsat 5 TM data (path/row: 123/32
and 123/33) covering the study area on June 5, 2010 were also
downloaded from USGS for land cover classification. The Landsat
data processing mainly included radiance calibration, mosaic and
subset. Radiance calibration was conducted to convert the DN
value to surface spectral reflectance and the atmospheric correc-
tion was conducted using FLAASH tools provided by ENVI version
5.0. Mosaic and subset process was used to extract the Landsat
data covering the study area for land cover classification.
2.3. Time series MODIS NDVI data

MODIS MOD13Q1 products (vegetation indices 16-day L3 Glo-
bal 250 m version 5) covering the study area and spanning one
year from October 2012 to September 2013 and from October
2009 to September 2010, for assisting land cover classification of
OLI and TM data, respectively, were downloaded from the National
Aeronautics and Space Administration (NASA) of the United States
(US) Warehouse Inventory Search Tool (WIST). These data were
distributed by the Land Processes Distributed Active Archive Cen-
ter (LP DAAC), located at the US Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center (https://lpdaa-
c.usgs.gov). Firstly, the daily MODIS vegetation indices data were
computed from atmospherically corrected bi-directional surface
reflectances that had been masked for water, clouds, heavy aero-
sols, and cloud shadows. Then, every 16-day daily vegetation indi-
ces data were composited to generate MOD13Q1 products.
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MOD13Q1 product provided 16-day composited vegetation indices
data at a spatial resolution of 250 m in the sinusoidal projection.
The NDVI data was extracted from the MOD13Q1 datasets for land
cover classification in this study.

The Savitzky–Golay (S–G) filter was used to smooth the time
series MODIS NDVI data, specifically the noise caused primarily
by cloud contamination and atmospheric variability (Chen et al.,
2004; Savitzky and Golay, 1964). The algorithm made data
approach the upper NDVI envelope and to reflect the NDVI pattern
of change. It used a moving window, and noisy values were
approximated by polynomial regression within the moving win-
dows. The smoothed MODIS NDVI data was re-projected to the
same projection with Landsat data and the spatial resolution was
resampled to 30 m. Finally, the same columns and lines of MODIS
NDVI data were extracted to keep consist with Landsat data for
further analysis.
3. Method

A flowchart of land cover classification of finer resolution
remote sensing data integrating temporal features from time series
coarser resolution data was presented in Fig. 2. All the remote
sensing data were firstly preprocessed to have good quality and
the same processing area. Then the MODIS NDVI data was fused
with Landsat data derived NDVI using the Spatial and Temporal
Adaptive Reflectance Fusion Model (STARFM) (Gao et al., 2006).
The temporal features were extracted from the fused time series
finer resolution NDVI data, and combined with Landsat spectral
bands for finer resolution land cover classification using supervised
classifier. Finally, accuracy assessment was conducted to investi-
gate the effect of temporal features extracted from coarser resolu-
tion data on improving land cover classification accuracy of finer
resolution data. The proposed approach hypothesized that land
cover classes were not changed in the Landsat image across the
temporal MODIS NDVI data, because changed land cover would
brought inaccurate temporal features and influence the classifica-
tion accuracy.
Fig. 2. The flowchart of land cover classification of finer resolution remote sensing
data integrating temporal features from time series coarse resolution data.
3.1. Fusion of Landsat NDVI with MODIS NDVI data

STARFM is firstly developed to blend MODIS and Landsat sur-
face reflectance by fusing high temporal resolution information
from MODIS and high spatial resolution information from Landsat
data. STARFM predicts pixel values based upon a spatially
weighted difference computed between the Landsat and the
MODIS data acquired at T1, and the Landsat T1-scene and one
or more MODIS scenes of prediction day (T2), respectively (Gao
et al., 2006). A moving window technique is used to minimize
the effect of pixel outliers thereby predicting changes of the cen-
ter pixel using the spatially and spectrally weighted mean differ-
ence of pixels within the window area (Gao et al., 2006). In this
study, Landsat NDVI data was scaled to 0–10,000 and assigned
as the Landsat T1-scene data. The same scaled and spatial resam-
pled (30 m) MODIS NDVI data acquired on the date which was
nearest to Landsat data was assigned as the MODIS T1 data.
The time series MODIS NDVI data was then scaled to 0–10,000
and used to produce Landsat-like NDVI data using STARFM.
Finally, the time series 16 day interval 30 m spatial resolution
fused NDVI data was generated for further land cover
classification.

3.2. Temporal features extraction from fused time series NDVI data

Using all of the fused time series NDVI data for land cover
classification was not a judicious choice, because the time series
data had much redundancy information and might reduce the
precision of model estimation of these parametric classifier
(Vaiphasa et al., 2007). Features selection was the better strategy
for reducing redundancy and improving computational efficiency.
Therefore, four temporal features included the maximum, the
minimum, the mean and the standard deviation value of the
fused time series NDVI data were extracted for further land cover
classification. These temporal features could represent the vege-
tation growth characteristics and provided phenological informa-
tion for improving vegetation type identification. The four
temporal features were composited with Landsat spectral data
for further land cover classification. The combined data contained
not only the spectral features of Landsat data, but also the tem-
poral information extracted from the time series MODIS NDVI
data.

3.3. Supervised classification

The maximum likelihood classifier (MLC) was selected for the
land cover classification of Landsat data integrating temporal fea-
tures extracted from time series MODIS NDVI data. The MLC was
the traditional parametric classifier used for remote sensing data
classification, which assumed that a hyper-ellipsoid decision vol-
ume could be used to approximate the shape of the data clusters
(Foody et al., 1992; Jia et al., 2011). Moreover, for a given unknown
pixel, the probability of membership in each class was calculated
using the mean feature vectors of the classes, the covariance
matrix and the prior probability (Duda and Hart, 1973). The
unknown pixel was considered to belong to the class with the
maximum probability of membership.

Coastal aerosol and blue bands of the Landsat OLI data were sig-
nificantly correlated and the coastal aerosol band was designed for
monitoring coastal waters and aerosol, therefore the coastal aero-
sol band was removed in the classification process. The cirrus band
of OLI data, which was designed for cloud identification and con-
tained limited land surface information, was also removed in the
land cover classification. Finally, bands 2, 3, 4, 5, 6, 7 of OLI data,
the composited OLI spectral bands with temporal features, bands
1, 2, 3, 4, 5, 6 of TM data and the composited TM spectral bands
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with temporal features, were separately used for land cover
classification to investigate the effect of temporal features on clas-
sification accuracy improvement.

Based on the characteristics of land cover type distribution in
the region, six classes were identified as the final class types of
the regional land cover classification experiment, which included
water, crop, bare land, impervious, grass and forest. Samples were
randomly selected in the Landsat data from known areas using the
‘region of interest’ (ROI) tools provided by ENVI version 5.0 soft-
ware with the help of ground knowledge and the Google Earth tool.
The characteristics of the sample ROIs for training and validating
the classifier using Landsat data and MODIS NDVI data were sum-
marized in Table 1. These homogeneous sample areas were easily
identified on the Landsat image and Google Earth map by visual
observation. The distribution of the sample pixels was uniform
and well represented the entire study area. Half of the sample pix-
els were randomly selected as training samples, and the remaining
half as validating samples.
3.4. Accuracy assessment

To assess the land cover classification performance using Land-
sat data integrating temporal features extracted from time series
MODIS NDVI data, the classification results of the MLC classifier
by using only Landsat data and Landsat data integrating temporal
features were assessed via visual observations and quantitative
classification accuracy indicators. Randomly selected sample pixels
were used to quantitatively assess the land cover classification
accuracy using the indicators including the overall classification
accuracy, producer accuracy, user accuracy, and Kappa statistics
(Congalton and Green, 1999; Foody, 2009; Tso and Mather,
2001). The total validation sample pixels for classification of OLI
data and OLI data integrating temporal features were 3023 pixels
for water, 3430 pixels for crop, 3961 pixels for bare land, 3523 pix-
els for impervious, 6695 pixels for forest and 2365 pixels for grass.
Meanwhile, the validation sample pixels for classification of TM
data and TM data integrating temporal features were 2898 pixels
for water, 3199 pixels for crop, 3107 pixels for bare land, 3626 pix-
els for impervious, 6293 pixels for forest and 2190 pixels for grass.
In order to access statistical differences between the accuracy mea-
surements of classification results using only Landsat data and
Landsat data integrating temporal features, a Z-test was performed
to see if they were significantly different (Foody, 2009; Thenkabail,
2010; Thenkabail et al., 2004).
4. Result

The land cover classification result of MLC using only Landsat
data and the composited Landsat spectral bands with temporal
features extracted from time series MODIS NDVI data were shown
in Figs. 3 and 4. In the visual aspect, each land cover types could
be identified effectively in each classification map based on the
Table 1
Number of ROIs and pixels in each land cover type used for training and validating the
MLC.

Water Crop Bare land Impervious Forest Grass

ROIs used for OLI data
Number of ROIs 22 86 51 33 107 81
Number of pixels 6046 6860 7922 7046 13,390 4730

ROIs used for TM data
Number of ROIs 21 93 88 38 106 86
Number of pixels 5796 6398 6214 7252 12,586 4380
visual observation of the Landsat data under expert’s knowledge.
Forests and grasses were mainly distributed in the north, north-
west and west mountain regions of Beijing, accounting for more
than half the area of Beijing. Crops were primarily distributed
in the south and east plain regions and plain regions in Yanqing
County. The impervious class was primarily distributed in urban
regions. Furthermore, classification result of combined Landsat
spectral data with temporal features extracted from time series
MODIS NDVI data performed better than that using only Landsat
spectral data. The main difference in the classification results of
using temporal features or not was that Landsat data integrating
temporal features could better classify each land cover type, espe-
cially the vegetation types, and reduce the misclassification
between each class types, indicating a more satisfactory land
cover classification results.

The quantitative classification accuracy assessment and kappa
statistics were estimated based on the validation samples. The con-
fusion matrices of the classification results using only Landsat
spectral data and combined Landsat spectral data with temporal
features were shown in Tables 2 and 3. The land cover classifica-
tion performances were all satisfactory, and Landsat spectral data
integrating temporal features achieved better classification accu-
racy (overall accuracy 94.6% and 93.7%, kappa coefficient 0.93
and 0.92 for OLI data integrating temporal features and TM data
integrating temporal features, respectively) than that using only
Landsat spectral data (overall accuracy 90.4% and 89.0%, kappa
coefficient 0.88 and 0.86 for OLI and TM data, respectively), which
was similar with the visual observation. The four temporal features
extracted from time series MODIS NDVI data improved the overall
classification accuracy approximately 4%, and the kappa coefficient
value approximately 5%. It was also shown that user accuracy and
producer accuracy for all land cover types had improvement when
using temporal features, especially for grass which had accuracy
improvement more than 10%.

The Z-test was used to compare the error matrices to determine
whether the classification accuracies were significantly different.
Z > 1.96 or Z < �1.96 would indicate the difference of the two error
matrices being significant at the 5% significance level (Foody, 2009).
If the two error matrices were not significantly different, when
given the choice of whether using temporal features extracted from
time series coarser resolution data, one should use only finer reso-
lution remote sensing data to obtain the easier, quicker or more
efficient approach because the accuracy would not be the deciding
factor (Thenkabail et al., 2004). The Z-test value for comparison
between the error matrices of classification result using temporal
features or not was 17.53 and 17.55 for OLI and TM data, respec-
tively, both larger than 1.96, and indicated that the error matrices
was significantly different and temporal features extracted from
time series coarser resolution data could significantly improve land
cover classification accuracy of finer resolution data.

The grass having lowest user and producer accuracy was mainly
caused by the fact that grass always co-existed with forest and had
smaller areas in the forest gaps and boundaries. In addition, dense
grass might have similar spectral characters with crops (mainly
wheat in this period); sparse grass typically had lower coverage,
which might be confused with bare land and impervious classes.
These phenomena had leading to difficulty in grass identification
using only one temporal Landsat data. Temporal information con-
tained vegetation growth characteristics and provided valuable
information for vegetation type discrimination, which was also
seen in the classification accuracy assessment in this study. It
was therefore concluded that temporal features extracted from
time series coarser resolution data had great effect on significantly
improving land cover classification accuracy of finer resolution
remote sensing data.



Fig. 3. Land cover classification results of MLC using only OLI spectral data (left) and the composited OLI spectral data and temporal features from MODIS NDVI data (right).

Fig. 4. Land cover classification results of MLC using only TM spectral data (left) and the composited TM spectral data and temporal features from MODIS NDVI data (right).
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5. Discussion

Temporal features are important information for land cover
classification using remote sensing data, especially for vegetation
type discrimination (Gu et al., 2010). Because different vegetation
types usually have different phenology characteristics, and show
different growth profiles in time series remote sensing data which
are always described by vegetation index profiles, thus providing
valuable information for land cover type classification. However,
the temporal features are only widely used in classification of coar-
ser resolution remote sensing data (Brown et al., 2013; Xiao et al.,
2002), because high temporal and finer spatial resolution remote
sensing data acquiring is very difficult (Zhang et al., 2013). This
study involved temporal features contained in time series coarser
resolution NDVI data to improve land cover classification accuracy
of finer resolution remote sensing data. The study provided a data
fusing strategy of integrating temporal features from coarser reso-
lution data with land cover classification of finer resolution remote
sensing data and solved the problem of difficulty in acquiring finer
resolution temporal features. The temporal features contained veg-
etation variation characteristic information and can weak the influ-
ence of cloud, terrain and shadow on classification of single or
fewer temporal finer resolution remote sensing data, thus signifi-
cantly improving land cover classification accuracy, especially for
vegetation type classification.

The proposed method is easily operated and only the time ser-
ies coarser resolution MODIS NDVI data is added, which is free and
leading to no data acquiring cost increasing. Along with more and



Table 2
Confusion matrixes for land cover classification using Landsat 8 OLI data and temporal features extracted from time series MODIS NDVI data.

Ground Truth (Pixels) User acc. (%) Pro. acc. (%)

Water Crop Bare Imp Grass Forest Total

Mapped class (pixels)
Using only Landsat OLI data
Water 2927 0 0 0 0 0 2927 100.0 96.8
Crop 1 3173 14 39 43 187 3457 91.8 92.5
Bare 0 5 3837 257 2 0 4101 93.6 96.9
Imp 86 28 110 3223 3 15 3465 93.0 91.5
Grass 4 126 0 4 1503 372 2009 74.8 63.6
Forest 5 98 0 0 814 6121 7038 87.0 91.4

Using Landsat OLI data and temporal features
Water 2933 0 0 0 0 0 2933 100.0 97.0
Crop 6 3309 18 8 20 130 3491 94.8 96.5
Bare 2 5 3895 120 0 0 4022 96.8 98.3
Imp 77 26 48 3395 0 2 3548 95.7 96.4
Grass 3 22 0 0 1973 303 2301 85.6 83.4
Forest 2 68 0 0 372 6260 6702 93.4 93.5
Total 3023 3430 3961 3523 2365 6695 22,997

Notes: Bare, bare land; Imp, impervious; Pro. acc., producer accuracy; User acc., user accuracy.

Table 3
Confusion matrixes for land cover classification using Landsat 5 TM data and temporal features extracted from time series MODIS NDVI data.

Ground Truth (Pixels) User acc. (%) Pro. acc. (%)

Water Crop Bare Imp Grass Forest Total

Mapped class (Pixels)
Using only Landsat TM data
Water 2841 0 0 0 0 0 2841 100.0 98.0
Crop 11 2936 11 73 170 226 3427 85.7 91.8
Bare 0 28 2873 246 0 0 3147 91.3 92.5
Imp 43 7 223 3307 0 0 3580 92.4 91.2
Grass 3 103 0 0 1245 299 1650 75.5 56.9
Forest 0 125 0 0 775 5768 6668 86.5 91.7

Using Landsat TM data and temporal features
Water 2842 0 0 0 0 0 2842 100.0 98.1
Crop 14 3136 11 17 128 208 3514 89.2 98.0
Bare 6 23 2982 119 0 0 3130 95.3 96.0
Imp 33 0 114 3490 0 1 3638 95.9 96.3
Grass 3 34 0 0 1718 278 2033 84.5 78.5
Forest 0 6 0 0 344 5806 6156 94.3 92.3
Total 2898 3199 3107 3626 2190 6293 21,313

Notes: Bare, bare land; Imp, impervious; Pro. acc., producer accuracy; User acc., user accuracy.
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more finer resolution remote sensing data becoming available, e.g.,
GF-1, HJ-1 A/B CCD, and SPOT 6 data, the proposed method have
great potential in improving land cover classification accuracy of
these finer resolution remote sensing data and will play an impor-
tant role in regional land cover mapping. The proposed approach
also has potential in classifying more detailed vegetation types,
such as coniferous and broad-leaf forest in forest category, wheat
and corn in crop category. Further studies will focus on using more
types of finer resolution remote sensing data and classifying more
detailed land cover types. Another interesting topic is the spans of
the temporal data influencing the land cover classification accu-
racy if high-quality higher temporal resolution time series NDVI
data being available, because larger temporal interval will weaken
the temporal characteristics.

There are also some potential limitations regarding the pro-
posed method. Firstly, the temporal features used in this study
are only the basic statistic variables, more significant features
should be developed for land cover classification, such as the phe-
nological features, the shape features extracted from the time ser-
ies vegetation index data. In addition, land cover in Landsat image
should not be changed across the temporal MODIS data, because
changed land cover would change the NDVI temporal profiles
and derive inaccuracy temporal features. The inconsistency in the
temporal features would influence the final classification result.
Moreover, the traditional and easily conducted MLC is selected as
the classification method which is also suitable when there are
large training samples. However, many more advanced non-
parameter classifiers have been developed for land cover classifica-
tion to improve accuracy, such as support vector machines, neural
networks and design tree (Lu and Weng, 2007). And non-parame-
ter classifiers usually can achieve more satisfactory classification
results (Mountrakis et al., 2011). This study is designed to investi-
gate the effect of temporal features extracted from time series
coarser resolution data on improving land cover classification
accuracy using finer resolution remote sensing data. Therefore,
only MLC is used in this paper and non-parameter classifiers will
be used to improve the performance of the proposed approach in
the future work.
6. Conclusion

This study proposed a land cover classification method of finer
resolution remote sensing data integrating temporal features from
time series coarser resolution data. The results indicated that tem-
poral features extracted from time series coarser resolution remote
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sensing data contained abundant vegetation growth information
and had significant effect on improving land cover classification
accuracy of finer resolution data. The land cover classification in
Beijing region shown that temporal features extracted from time
series MODIS NDVI data could significantly improve the overall
classification accuracy approximately 4% compared to that only
using a single temporal Landsat data. User accuracy and producer
accuracy for all land cover type had a great improvement, espe-
cially for vegetation types. The proposed method had great poten-
tial for using on regional land cover classification of finer
resolution remote sensing data.
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