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The successful launch of Landsat 8 provides a new data source for monitoring
land cover, which has the potential to significantly improve the characterization of
the earth’s surface. To assess data performance, Landsat 8 Operational Land Ima-
ger (OLI) data were first compared with Landsat 7 ETM + data using texture fea-
tures as the indicators. Furthermore, the OLI data were investigated for land cover
classification using the maximum likelihood and support vector machine classifiers
in Beijing. The results indicated that (1) the OLI data quality was slightly better
than the ETM + data quality in the visible bands, especially the near-infrared band
of OLI the data, which had a clear improvement; clear improvement was not
founded in the shortwave-infrared bands. Moreover, (2) OLI data had a satisfac-
tory performance in terms of land cover classification. In summary, OLI data were
a reliable data source for monitoring land cover and provided the continuity in the
Landsat earth observation.

Keywords: land cover; classification; Landsat 8; texture; Operational Land Imager

1. Introduction

Land cover patterns reflect the underlying natural and social processes, thus providing
essential information for modelling and understanding many phenomena on Earth
(Liang 2008). More importantly, land cover data are important for climate change stud-
ies and understanding the complex interactions between human activities and global
change (Running 2008; Gong et al. 2013). Accurate land cover information is also an
essential factor for improving the performance of ecosystem, hydrologic and atmo-
spheric models (Bounoua et al. 2002; Jung et al. 2006; Miller et al. 2007). Land cover
knowledge is critical and serves as the basis for geoscience and global change studies.

Remote sensing has long been an important and effective means for monitoring
land cover with its ability to quickly provide broad, precise, impartial and easily avail-
able information regarding the spatial variability of the land surface (Hansen et al.
2000; Liu et al. 2003; Thenkabail et al. 2009; Gong et al. 2013). The particular remote
sensing data source is an important factor for a successful land cover classification.
Landsat satellite data are commonly used remote sensing data for land cover classifica-
tion (Gumma et al. 2011; Gong et al. 2013); the availability of global data-sets from
Landsat has the potential to significantly improve the characterization of the earth’s
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land surface (Townshend et al. 2012). When Landsat 5 being decommissioned in 2013,
and Landsat 7 image being missing 22% drop from the scan line corrector failure
(Tollefson 2013), the successful launch of Landsat 8 on 11 February 2013 provides the
continuity in the Landsat earth observation mission (Lulla et al. 2013). The Landsat 8
orbits the earth every 99 min, covering the entire earth every 16 days except for the
highest polar latitudes. Landsat 8 follows a sun-synchronous orbit at an average altitude
of 705 km and 98.2° inclination. The Landsat 8 sensors include an Operational Land
Imager (OLI) with nine bands, including the high-resolution panchromatic band, and a
Thermal Infrared Sensor (TIRS) with two thermal bands.

Compared to Landsat 7, Landsat 8 has several new features: (1) two sensors, i.e.
OLI and TIRS, (2) two spectral bands that include coastal aerosol and cirrus bands, (3)
one thermal band that is split into two bands, (4) a refined spectral range for some
bands, improving the spectral responses across the channels, e.g. near-infrared (NIR)
and panchromatic bands, (5) improved radiometric resolution from 8 bits to 12 bits
(Pahlevan & Schott 2013) and (6) the change in instrument design has resulted in sig-
nificant improvements in signal to noise ratios (SNR), almost twice as good as Landsat
7 (Irons et al. 2012). The narrowing of the NIR band avoids the effect of water vapour
absorption at 0.825 μm, similar to that of MODIS, and helps acquire accurate surface
reflectance. The enhanced radiometric resolution improves the spectral record precision
and avoids spectral saturation compared to previous Landsat data. Therefore, the Land-
sat 8 OLI data are expected to perform better for in land cover mapping. This study is
conducted to investigate the performance of Landsat 8 OLI data and demonstrate its
application for land cover classification in Beijing, China.

2. Study area

Beijing, the capital of China, is located between latitudes 39°26 and 41°03′N and longi-
tudes 115°25′E and 117°30′E, covering an area of approximately 16,800 km2. The resi-
dent population of Beijing is approximately 19 million based on the sixth nationwide
census in 2011 (Figure 1). Beijing is located in the northern extent of the North China
Plain, belonging to a temperate climatic zone. The geography of Beijing is character-
ized by alluvial plains in the south and east with hills and mountains dominating the
north, north-west and west regions. The highest point above sea level is 2303 m and
the lowest is 10 m. The climate in Beijing has four distinct seasons with hot and humid
summers and cold, windy and dry winters. The average annual temperature and precipi-
tation are approximately 12 °C and 664 mm, respectively. The various land cover types,
including forest, grass, cropland, developed regions and water, have made land cover
classification in Beijing a representative choice. Furthermore, Beijing has undergone
rapid urbanization and economic growth in recent years. As a result, the land cover has
been largely changed.

3. Data and method

3.1. Data processing

Two Landsat 8 OLI data (path/row: 123/32 and 123/33) for the study area on May 12,
2013, were downloaded from the United States Geological Survey (USGS) website
(http://glovis.usgs.gov/). To assess the performance of OLI data, Landsat 7 ETM +
SLC-off data from May 20, 2013, (path/row, 132/32) were also downloaded from the
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USGS website. It was assumed that there was no obvious land cover type change
between the data acquisition time of the OLI and ETM + data. Clouds were nearly
absent in the acquired Landsat data. Moreover, the quality of the multispectral data was
good. Furthermore, the weather was good for the two data acquisition times and no
smog appeared in the atmosphere. Therefore, it was assumed that air condition effect
on the atmospheric correction of Landsat data could be ignored and there was compara-
bility between OLI and ETM + data. Because the scan-line corrector for the ETM +
sensor failed in 2003, approximately 22% of the pixels per scene were not scanned
(Chen et al. 2011). Therefore, the regions selected for comparing OLI and ETM + data
were located in the area where there were no data gaps in ETM + data (Figure 1).

The Landsat data processing mainly included radiance calibration, atmospheric cor-
rection, mosaic and subset. Because the continuity of the two OLI scenes was good
and the co-registration between OLI and ETM + data was satisfactory through overlay-
ing and a visual comparison, geo-referencing was not conducted in this study. The
Landsat data radiance calibration converted the digital numbers value to radiance, and
then atmospheric correction was performed to obtain the surface spectral reflectance
using Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
algorithm. FLAASH was developed to provide accurate, physics-based derivation of

Figure 1. The geographical region of Beijing, China. The background information is the false
colour image (R: NIR, G: red, B: green) of OLI data acquired on May 12, 2013. The blue rectan-
gles show the location for assessing the data performance of OLI and ETM + data.
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atmospheric properties, which was derived from MODTRAN4, to incorporate those
same quantities into a correction matrix, and finally to invert ‘radiance-at-detector’
measurements into the ‘reflectance-at-surface’ values (Cooley et al. 2002). The model
selection of optical properties for ETM + and OLI data atmospheric correction using
FLAASH was same to avoid the inconsistency in the corrections. Mosaic and subset
data were used to extract the OLI data covering the study area for land cover
classification.

3.2. Landsat 8 OLI data compared to Landsat 7 ETM + data

To provide a more comprehensive assessment of OLI data, the data quality was evalu-
ated through a comparison with ETM + data using texture information contained in the
data, which is a commonly used indicator for image quality (Gadkari 2004; Jiang et al.
2013). The grey-level co-occurrence matrix (GLCM) was used to extract texture fea-
tures for the data comparison. The GLCM is a matrix of frequencies in which two pix-
els are separated using a certain vector that occurred in the image. The matrix depends
on the angular and distance relationships between pixels (Haralick et al. 1973).

In this study, four features, i.e. homogeneity (HOM), contrast (CON), entropy
(ENT) and angular second moment (ASM), were calculated to evaluate the data qual-
ity (Jia et al. 2012). HOM and ASM are measures of homogeneity for the image.
Moreover, CON is a measure of the contrast or the amount of local variations present
in an image (Haralick et al. 1973). ENT measures the disorder or complexity of an
image. The ENT is large when the image is not texturally uniform and many GLCM
elements have very small values. Complex textures tend to have high entropy. On
one hand, HOM and ASM decrease with increasing image quality. On the other
hand, CON and ENT increase with increasing image quality (Gadkari 2004). Three
regions with specific main land cover classes (crop region, build-up region and forest
region) were selected from the matching ETM + and OLI data to calculate the four
features (Figure 1). The co-occurrence matrix values were calculated using a 3 × 3
window size; the grey-level value was 64 to produce the average value for each
texture measurement.

3.3. Land cover classification method

Because ETM + data had many data gaps in the study area, it was difficult to directly
compare the classification result of ETM + and OLI data. Though gaps filling methods
had been developed to fill the missing regions resulted in scan line failure (Chen et al.
2011), the gaps filled image had spectral reflectance differences at a certain extent with
actual situation in the data acquiring period. Direct comparison between the classifica-
tion results of gaps-filled ETM + and OLI data might bring about inaccurate informa-
tion. Therefore, ETM + data were not classified to compare with the classification
results of OLI data in this study. Only OLI data were used for the land cover classifica-
tion to assess its performance.

The maximum likelihood (MLC) and support vector machine (SVM) classifiers
were selected for the land cover classification of OLI data. The MLC has been the most
popular parametric classifier used for remote sensing data classification (Foody et al.
1992; Jia et al. 2011). The MLC assumes that a hyper-ellipsoid decision volume can be
used to approximate the shape of the data clusters. Moreover, for a given unknown
pixel, the probability of membership in each class is calculated using the mean feature
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vectors of the classes, the covariance matrix and the prior probability (Duda & Hart
1973). The unknown pixel is considered to belong to the class with the maximum
probability of membership. The SVM classifier is the most widely used non-parametric
statistical learning classifier with no assumptions made regarding the underlying data
distribution. This method typically performs better in land cover classification studies
(Foody & Mathur 2004; Pal & Mather 2005; Jia et al. 2012; Pal & Foody 2012). The
SVM algorithm promises to obtain the optimal separating hyper-plane for a training
data-set in terms of the generalization error. A detailed description of the SVM algo-
rithm can be found in (Burges 1998). The radial basis function (RBF), which is usually
a reasonable choice (Jia et al. 2013), was selected as the kernel function for the SVM
classifier. First, the RBF kernel non-linearly mapped samples into a higher dimensional
space so the RBF could handle the case when the relationship between class types and
attributes was not linear. Second, the RBF kernel had fewer numerical computational
difficulties. The penalty value C and kernel parameter γ were the two parameters used
for the RBF kernels, set to 100 and 0.167, respectively, according to prior experience.
Because coastal aerosol and blue bands of the OLI data were significantly correlated
and the coastal aerosol band was primarily designed for monitoring coastal waters and
aerosol, the coastal aerosol band was removed in the classification process. The cirrus
band, which was primarily designed for cloud identification and contained limited land
surface information, was also removed for the land cover classification. Finally, surface
reflectance value of bands 2, 3, 4, 5, 6 and 7 of OLI data were used for land cover
classification using MLC and SVM classifier.

Based on the knowledge of land cover distribution characteristics, six classes were
identified as the final class types, i.e. water, crop, bare land, impervious, grass and for-
est. Representative sample collection is the most time-consuming and essential process
in land cover classification efforts. In this study, samples were randomly selected from
known areas using the ‘region of interest’ (ROI) tools provided by ENVI version 5.0
software with the assistance of ground knowledge and the Google Earth tool to recog-
nize the land cover type. Table 1 summarizes the characteristics of the sample ROIs for
training and validating the classifiers. These homogeneous sample areas were easily
visually identified on the OLI image and Google Earth map. The distribution of the
sample pixels was uniform, well representing the entire study area. Half of the sample
pixels were randomly selected as training samples, and the remaining half was used for
classification accuracy assessment.

3.4. Classification accuracy assessment

To validate the land cover classification performance using OLI data, the classification
results using the MLC and SVM classifiers were assessed via visual observations and
quantitative classification accuracy indicators. Randomly selected sample pixels, as
described in section 3.3, were used to quantitatively assess the land cover classification

Table 1. Number of ROIs and pixels in each class type used for training and validating the
MLC and SVM classifiers.

Water Crop Bare land Impervious Forest Grass

Number of ROIs 22 86 51 33 107 81
Number of pixels 6046 6860 7922 7046 13,390 4730
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accuracy. The total sample pixels used for the classification accuracy estimation were
3023 pixels for water, 3430 pixels for crop, 3961 pixels for bare land, 3523 pixels for
impervious, 6695 pixels for forest and 2365 pixels for grass. The overall classification
accuracy, producer’s accuracy, user’s accuracy and Kappa statistics were then estimated
for quantitative classification performance analysis (Congalton & Green 1999; Tso &
Mather 2001; Foody 2009; Foody 2013).

4. Results

4.1. Comparison between Landsat 8 OLI data and Landsat 7 ETM + data

The four average texture features (HOM, CON, ENT and ASM) in the three selected
regions for comparison between OLI and ETM + data are shown in Table 2. Nearly all
HOM and ASM average values for OLI VIS-NIR bands in the three regions were smal-
ler than those for the ETM + data. Especially, the difference in HOM and ASM values
between ETM + and OLI in NIR bands was large than for the VIS bands. However,
the HOM and ASM average values for the SWIR bands demonstrated different perfor-
mances in different regions. In crop and build-up regions, the HOM and ASM values
for the SWIR bands of the OLI data were larger than for the ETM + data; the opposite
was found in the forest region. As for the CON and ENT features, nearly all values for
the VIS-NIR bands of the OLI data were larger than for the ETM + data. Similarly, the
CON and ENT average values for the SWIR bands exhibited had different
performances in different regions.

4.2. Land cover classification of OLI data in Beijing

The land cover classification results of the OLI data using the MLC and SVM classifi-
ers are shown in Figure 2. Visually, each class type can be identified using the MLC

Table 2. Four texture features (i.e. HOM, CON, ENT and ASM) calculated in three selected
regions for comparison between Landsat 7 ETM + and Landsat 8 OLI data.

Band

HOM CON ENT ASM

L7 L8 L7 L8 L7 L8 L7 L8

Crop region Blue 0.214 0.202 31.492 39.018 2.080 2.085 0.118 0.118
Green 0.188 0.169 39.889 54.846 2.090 2.102 0.117 0.115
Red 0.170 0.150 49.989 71.965 2.103 2.111 0.115 0.113
NIR 0.276 0.236 18.238 28.803 2.025 2.067 0.129 0.121
SWIR 1 0.240 0.244 23.778 23.280 2.062 2.059 0.122 0.123
SWIR 2 0.215 0.303 30.896 13.505 2.079 2.008 0.119 0.132

Build-up region Blue 0.304 0.267 15.275 21.208 1.977 2.011 0.127 0.121
Green 0.319 0.281 13.381 18.758 1.958 1.994 0.131 0.124
Red 0.251 0.240 23.616 24.998 2.024 2.028 0.119 0.118
NIR 0.284 0.205 17.096 36.809 1.996 2.053 0.124 0.114
SWIR 1 0.271 0.320 20.275 13.052 2.002 1.957 0.123 0.131
SWIR 2 0.262 0.324 21.541 12.555 2.007 1.951 0.122 0.132

Forest region Blue 0.287 0.270 19.311 29.623 1.916 1.987 0.138 0.126
Green 0.254 0.222 24.475 33.092 1.974 2.031 0.127 0.117
Red 0.366 0.292 13.588 25.750 1.875 1.960 0.149 0.131
NIR 0.189 0.184 37.174 42.001 2.050 2.060 0.114 0.112
SWIR 1 0.256 0.178 52.450 53.737 1.988 2.056 0.126 0.113
SWIR 2 0.342 0.243 18.194 29.955 1.916 2.005 0.139 0.122
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and SVM classifiers based on an expert’s knowledge. Forests and grasses were mainly
distributed in the north, north-west and west mountain regions of Beijing, accounting
for more than half the area of Beijing. Crops were primarily distributed in the south
and east plain regions and plain regions in Yanqing County. The impervious class was
primarily distributed in urban regions.

4.3. Land cover classification accuracy

The classification accuracy and kappa statistics were estimated based on the validation
samples and the confusion matrix of the OLI data classification results using the SVM
and MLC classifiers are shown in Tables 3 and 4, respectively. The overall classifica-
tion accuracies were all greater than 90%. The overall performance of the MLC classi-
fier (overall accuracy 90.4%; kappa coefficient: 0.88) was slightly inferior to the SVM
classifier (overall accuracy: 91.3%; kappa coefficient: 0.89). The grass class had the
lowest user and producer accuracy and the maximum confusion with the forest category
(Tables 3 and 4). Other class types all had a better separation with each other and
higher user and producer accuracies.

Table 3. Confusion matrixes for land cover classification of the Landsat 8 OLI data using the
SVM classifier.

Mapped
class

Ground truth (Pixels)
User

accuracy
(%)Water Crop

Bare
land Impervious Grass Forest Total

Water 3001 0 0 3 0 18 3022 99.3
Crop 0 3296 2 15 59 65 3437 95.9
Bare land 2 2 3774 227 2 1 4008 94.2
Impervious 12 2 185 3261 2 0 3462 94.2
Grass 0 65 0 2 1509 455 2031 74.3
Forest 8 65 0 15 793 6156 7037 87.5
Total 3023 3430 3961 3523 2365 6695 22,997
Producer

accuracy
99.3% 96.1% 95.3% 92.6% 63.8% 91.9%

Table 4. Confusion matrixes for land cover classification of the Landsat 8 OLI data using the
MLC classifier.

Mapped
class

Ground truth (Pixels)
User

accuracy
(%)Water Crop

Bare
land Impervious Grass Forest Total

Water 2927 0 0 0 0 0 2927 100.0
Crop 1 3173 14 39 43 187 3457 91.8
Bare land 0 5 3837 257 2 0 4101 93.6
Impervious 86 28 110 3223 3 15 3465 93.0
Grass 4 126 0 4 1503 372 2009 74.8
Forest 5 98 0 0 814 6121 7038 87.0
Total 3023 3430 3961 3523 2365 6695 22,997
Producer

accuracy
96.8% 92.5% 96.9% 91.5% 63.6% 91.4%
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5. Discussion

Texture information extracted using GLCM was selected to compare OLI and ETM +
data performance. The HOM and ASM values for ETM + VIS-NIR bands were larger
than that of OLI data, which indicated that the ETM + data exhibited coarser texture.
Moreover, the larger difference in HOM and ASM values indicated the NIR band of
the OLI had much finer texture and the refined spectral range of the NIR band
improved the OLI data quality. As for SWIR bands, clear improvement was not found
between OLI and ETM + data. Considering the COM and ENT texture features, the
larger values for the VIS-NIR bands of the OLI data demonstrated that the OLI VIS-
NIR images were clearer and contained more texture information, especially for the
NIR band. In general, by comparing texture features, the image performance of the
Landsat 8 OLI data was slightly better than for the Landsat 7 ETM + data in the VIS
bands. Moreover, the NIR band of the OLI data clearly improved, whereas clear
improvement was not found for the SWIR bands. These texture comparisons revealed
that the new features of OLI sensor improved data performance, especially for the NIR
band which might mainly attribute the success to narrowing the band to avoid the
effect of water vapour absorption at 0.825 μm. The significant enhancements in SNR of
OLI sensor might be another important reason for data performance improvement.

According to visual observations and quantitative classification accuracy assess-
ment, there were satisfactory land cover classification results for the OLI data using
both the MLC and SVM classifiers. The main difference in classification results using
the MLC and SVM classifiers was that some vegetation types in main urban regions
were misclassified as crops using the MLC classifier, and the SVM classifier was able
to correctly classify these regions. Each class type could be better separated from each
other except for grass had the lowest classification accuracy. The confusion of grass
and forest was mainly caused by the fact that grass always coexisted with forest and
had smaller areas in the forest gaps and boundaries. In addition, dense grass might have
similar spectral characters with crops (mainly wheat in this period); sparse grass typi-
cally had lower coverage, which might be confused with bare land and impervious
classes. Moreover, the SVM classifier performed better than the MLC classifier in the
land cover classification using OLI data, while other studies had also demonstrated that
the SVM typically performed better for land cover classification (Mountrakis et al.
2011). Considering the overall performance of OLI data using both MLC and SVM
classifier, classification accuracy all exceeded 90%. Compared to the other studies, such
as the land cover/use classification in Beijing using Landsat achieved overall accuracy
from 87.17% to 89.23% (Wu et al. 2006), and global land cover map using Landsat
TM/ETM + data with SVM classifier achieved overall accuracy of 66.63% in China
(Gong et al. 2013), the classification result of OLI data is satisfactory. It was therefore
indicated that OLI data had a satisfactory performance in land cover classification, and
provided the reliable data continuity in the Landsat earth observation.

Overall, OLI data had a better performance compared to ETM + data and achieved
satisfactory land cover classification results in this study. However, only the VIS-NIR
and SWIR bands of the OLI data were investigated. Further studies might focus on
evaluating the performance of the coastal aerosol band for coastal waters and aerosol
monitoring, cirrus band for cloud identification and TIRS sensor thermal data for land
surface temperature retrievals.
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6. Conclusion

Landsat 8, the new generation of Landsat series satellites, was successfully launched
and began to supply data for the worldwide community of researchers and educators in
May 2013. To assess the data performance, Landsat 8 OLI data were first compared
with Landsat 7 ETM + data using texture features; OLI data were also investigated for
land cover classification in Beijing, China. By comparing the texture information con-
tained in the OLI and ETM + data, and analysis of land cover classification perfor-
mance using OLI data, the following primary conclusions were drawn. (1) The OLI
data performance was slightly better than the ETM + data performance in the VIS
bands, especially for the NIR band of the OLI data, where a clear improvement was
found. Clear improvement was not founded in the SWIR bands. (2) OLI data had a sat-
isfactory performance in land cover classification; the overall classification accuracy
using the SVM classifier was higher than for the MLC classifier.
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