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Abstract—The development of efficient and systematic ground-
based spatial sampling strategies is critical for the validation of
medium-resolution satellite-derived leaf area index (LAI) products,
particularly over heterogeneous land surfaces. In this paper, a new
sampling strategy based on high-resolution vegetation index prior
knowledge (SSVIP) is proposed to generate accurate LAI reference
maps over heterogeneous areas. To capture the variability across a
site, the SSVIP is designed to 1) stratify the nonhomogeneous area
into zones with minimum within-class variance; 2) assign the
number of samples to each zone using Neyman optimal allocation;
and 3) determine the spatial distribution of samples with a nearest
neighbor index. The efficiency of the proposed method was exam-
ined using different vegetation types and pixel heterogeneities. The
results indicate that the SSVIP approach can properly divide a
heterogeneous area into different vegetation cover zones. Whereas
the LAI reference maps generated by SSVIP attain the target
accuracy of 0.1 LAI units in cropland and broadleaf forest sites,
the current sampling strategy based on vegetation type has a root
mean square error (RMSE) of 0.14 for the same number of samples.
SSVIP was compared with the current sampling strategy at 24
VALERI sites, and the results suggested that samples selected by
SSVIPweremore representative in the feature space and geograph-
ical space, which further indicated the reasonable validation over
heterogeneous land surfaces.

Index Terms—Heterogeneous pixel, leaf area index (LAI), prior
knowledge, product validation, sampling strategy.

I. INTRODUCTION

T HE LEAF AREA index (LAI) is a key parameter for
ecosystem process models [1]–[3]. Satellite remote sens-

ing provides a unique way to obtain the LAI at regional to global
scales. In recent years, several global LAI products have been
derived from sensors, such as TERRA&AQUA/MODIS [4],
SPOT/VEGETATION [5], ENVISAT/MERIS [6], TERRA/
MISR [7], and AVHRR [8], [9]. Validation and accuracy

assessment of these LAI products are important for product
utilization, algorithm improvement, and product refinement [10].

Many ground observation programs at the global or continen-
tal scale have been implemented, such as the BOREAS and
Bigfoot programs in North America [11]–[13], SAFARI2000 in
Africa [14], VALERI in Europe, andWATER inChina [15]. The
early observation programs were mainly validated over relative-
ly homogeneous landscapes, and the arithmetic mean of several
in situmeasurements was typically regarded as the true value of a
pixel [16], [17]. However, the validation of medium-resolution
products over heterogeneous land surfaces is challenging be-
cause ground-based measurements are typically spatially limit-
ed, and direct comparison of the products may not be reasonable
due to spatial heterogeneity [18]. A generally accepted “bottom-
up” validation approach based on a two-stage sampling strategy
can solve the problem of scale-mismatch between ground point
measurements and the pixels [19], [20]. This approach employs
both field measurements and high-resolution satellite data to
establish a site-specific relationship (transfer function) and to
generate high-resolution LAI reference maps over the site. The
LAI reference maps are then aggregated to a 1-km resolution and
used as benchmarks to validate the products [21]. This frame-
work can be adapted to validations over nonhomogeneous land
surfaces. However, the accuracy of this methodology depends
largely on the precision of the field measurements, imperfect
atmospheric corrections, calibration and geolocation errors of the
high-resolution satellite data, sampling strategy, and land surface
heterogeneity [10], [21]. The spatial sampling strategy is a key
step in the validation process of generating LAI reference maps.
Different sampling strategies will generate different coefficients
of the transfer function and ultimately affect the accuracy
assessment of the LAI product.

The three most commonly used sampling strategies are ran-
dom, systematic and stratified sampling [22]. The simplest
sampling strategy is random sampling, in which the sample
locations are selected by a series of random numbers [17],
[23], [24]. In the random sampling strategy, each unit in the
site has an equal and independent chance of selection. However,
the sampling variance is typically larger than other methods for
the same number of samples because large empty spaces and
aggregation of sampling points may occur. The systematic
sampling strategy generates a regular grid to determine the
sample locations. The grid can be square, rectangular, hexagonal,
or any other shape [14], [16], [25], [26]. Samples selected by this
method are uniformly spread across the geographic space, but
each unit in the site does not have an equal probability of
selection, and minor class types may have rare sample units and
be under-represented. The two strategies described above are
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based on the assumption that there is no prior knowledge about
the sampling site, and both methods are able to achieve satisfac-
tory accuracy in relatively homogeneous areas. However, the
land surface is typically heterogeneous at moderate or coarse
resolution, and thus, bothmethodsmay not guarantee an accurate
validation. Stratified sampling has the potential to use a priori
knowledge, such as vegetation types, to partition the area into
relatively homogeneous subareas (zones) and therefore capture
the heterogeneity of the land surface. Recent research has
attempted to employ readily available prior knowledge, such as
land cover types or soil types, to design amore efficient sampling
strategy and to achieve the same accuracy with fewer samples
[27]–[29]. This method is potentially the most efficient approach
and is widely used in current field campaigns, such as the
VALERI project, Maun in Botswana, the Harvard Forest in the
USA, and the Ruokolahti Forest in Finland [30]–[32].

Determining the true LAI value of the land surface is crucial in
LAI product validation. The optical (chlorophyll, leaf water
content) and structural (leaf angle distribution) properties of
leaves and soil reflectance are important parameters in radiative
transfer modeling and LAI retrieval algorithms [33], [34]; how-
ever, these parameters do not impact the true LAI value of a
validation site. The method used to build the transfer function
determines the choice of the prior knowledge [32], [35].
A uniform empirical relationship between the LAI and the
reflectance or vegetation index (VI) is widely used to build the
transfer function [10], [18]. This approach assumes that the LAI
is the primary influence on the reflectance or VI for a given
vegetation type and that the impact of variations of the leaf
optical and structural properties and soil reflectance on the
transfer function is limited when applied at the local scale of
a validation site. Samples that can represent the feature and
spatial distribution characteristics of the sampling area are crucial
to ensure the accuracy of the transfer function. In ground
sampling schemes for LAI validation, such as in the VALERI
project, a vegetation classification map is commonly used, and
the number of samples for each type is allocated in proportion to
the areas of the vegetation types across the entire site [30], [32].
However, prior knowledge provided by the classification map is
limited when there is a single vegetation type but the vegetation
density varies, such as in grassland and forest [36]. The VI, the
variability of which represents the heterogeneity of the vegeta-
tion’s growth conditions, is more suitable as a priori knowledge.
Although the VI is a compound effect of the leaf optical
properties, leaf structural properties, and soil reflectance, it has
a strong relationship with the LAI and is generally accepted to be
a representative indicator of the LAI. However, the VI is not
employed in the existing LAI sampling strategies.

The aim of this studywas to propose a sampling strategy based
on VI prior knowledge (SSVIP) that is more suitable for LAI
validation over heterogeneous land surfaces than existing strate-
gies. Section II describes why the VI map is appropriate for
optimizing the sampling strategy of in situ LAI measurements
from sampling theory and then proposes the SSVIP method.
Section III designs a direct sampling efficiency evaluation
procedure based on a PROSAIL model simulation [33] and
using the bottom-up framework. Section IV compares the SSVIP
method with the current sampling strategy based on vegetation

type and analyzes the sampling accuracy and stability, sample
number and heterogeneity, representative elementary sampling
unit (ESU) in the feature and geographical space, and LAI
reference map accuracy. In Section V, SSVIP is compared to
the existing sampling strategy at 24 VALERI sites by comparing
the normalized difference VI (NDVI) cumulative frequency
distributions of the population with those of the ESUs using
several sampling strategies. Section VI summarizes the SSVIP
method, analyzes the deficiencies of SSVIP, and discusses future
research directions.

II. METHODOLOGY

A. Theoretical Analysis

In LAI product validation, the goal of proposing an efficient
sampling strategy is to improve the accuracy of the LAI reference
map. In this section, we analyze how the efficiency of the
sampling strategy could be improved by using the VI as a priori
knowledge.

Assume that the validation site consists of medium-resolu-
tion pixels and that each medium-resolution pixel contains
high-resolution pixels. Therefore, the validation site consists of

high-resolution pixels (the population). In general, the site-
specific relationship (transfer function) between the field mea-
sured LAI of each ESU and the single VI (SVI), such as NDVI
and simple ratio (SR), is a univariate exponential or linear
regression. The transfer function is applied to the entire site to
generate the high-resolution LAI reference map, and the LAI
reference map is then aggregated to medium resolution to
validate the remotely sensed LAI product. By the independent
residual assumption, the mean prediction error between the
aggregated LAI reference map and the true value is [35]

where is the VI value of the high-resolution pixel, is the
number of samples, is the mean square error between the
true value and prediction value of the samples, and are the
mean and standard deviation of the high-resolution VI value of
the samples, respectively, and and are the mean and
standard deviation of the high-resolution VI value of the entire
site, respectively. Equation (1) illustrates that for a given dataset,
when , , , , and arefixed, themean prediction error
is affected by the difference between the sample and population
means ( ) and the sample variance ( ). In
other words, the samples should be unbiased and be spread
across the feature space. An appropriate sampling strategy
should sample regularly along the feature space and proportion-
ally represent it. Such sampling can be achieved by stratifying the
entire validation site proportionally to the histogram of LAI or
the reflectance data such that the samples and entire site have
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similar histograms, and thus, the samples will be unbiased and
have good coverage across the feature space. Thus, stratifying
based on the VI is a more direct way to improve the sampling
efficiency compared with stratifying based on vegetation types.

B. Sampling Strategy Based on VI Prior Knowledge (SSVIP)

According to the theoretical analysis presented above, an
optimal sampling strategy must satisfy the following two
requirements.

1) The samples should be unbiased to guarantee that there are
no differences between the sample and population mean
( ).

2) The samples should be spread across the feature space to
maximize the sample variance ( ).

However, these two points based on the theoretical analysis
are not sufficient. If there is no penalty on spatial clustering,
optimization only in the feature space may lead to spatial
clustering of the sample locations. In a multiple linear regression
function, the residuals are assumed to be independent. However,
in practice, the residuals will often be spatially auto-correlated,
and thus, the estimation of the regression coefficients is overly
optimistic [37]. Tominimize the effect of the spatially dependent
characteristics of the residuals, the sample locations should have
a maximum geographical spread [35]. Cochran [38] also noted
that to estimate the spatial means of an environmental variable,
the accuracy of the result will typically increase by dispersing the
sample locations for better coverage of the study area. Therefore,
an optimal sampling strategy has one additional requirement:

1) The samples should be spread across the geographical
space.

To satisfy the above requirements, five steps are generally
needed to implement SSVIP as follows.
Step 1) Deriving an appropriate high-resolution VI map

The high-resolution VI map is used as a priori
knowledge to determine the distribution and number
of samples. First, the acquisition date of the high-
resolution imagery should be close to the sampling date
to guarantee that the spatially heterogeneous character-
istics have not changed. Second, special attention
should be paid to the radiance calibration and geometric
correction of the imagery to guarantee accurate top-of-
atmosphere (TOA) and top-of-canopy (TOC) reflec-
tance. Atmospheric correction is not mandatory if it is
safe to assume that the effect of the atmosphere is the
same over the entire site [19]. Finally, an appropriate VI
whose variations are sensitive to vegetation density
must be selected. The NDVI may be a good choice at
low LAI values; however, the NDVI easily reaches
saturation during the summer in some dense forest sites,
which prevents this index from identifying changes in
the LAI [39]. The SR or RSRmay be alternative choices
if the NDVI becomes saturated at high LAI values.

Step 2) Setting the number of samples
The number of ESUs depends on the extent of the

validation site, its variability, and the size of the ESUs
[19]. This number is also constrained by the manpower
resources and time. At present, there is no quantitative

method to determine the sampling number for a specific
area. Baret et al. [32] recommended that 30–50 ESUs
( ) were appropriate for a site. In
general, the number of ESU should be increased for a
more heterogeneous surface or a larger study site.

Step 3) Setting the optimal segmentation threshold
For stratified sampling, when the number of allocated

sample points within each stratum ( ) is fixed, the
expected sampling variance depends on the weighted
sum of the variances within the strata. The lower within-
class variance results in a lower expected sampling
variance. Therefore, we set the weighted sum of the
varianceswithin the strata as the objective function (OF)

where is the corresponding weight assigned to the
th stratum, , where is the number of

populations within the th stratum, and is the number
of populations in the entire site. is the stratum number,
which ranges fromone to and is an integer. In general,
larger values of will result in smaller values. The
optimal segmentation threshold ( ) is calculated by
minimizing the OF.

In Section III, is assigned to be equal to the number
of vegetation types to compare SSVIP with the current
sampling strategy, which is based on vegetation type.
We use the vegetation type map according to the non-
supervised k_means classificationmethod implemented
in the VALERI campaign reports and the detailed
vegetation status description of each ESU. In general,
SSVIP will perform better with more vegetation density
levels because itwill lead to a smaller in (2). Thus, in
Section V, the stratum number ( ) is set to be equal to
the number of samples to achieve the highest efficiency.

Step 4) Assigning the number of samples to each stratum
Because the population variance of each stratum is

known, we can use Neyman optimal allocation to assign
the number of samples of each zone to have the lowest
sample variance. For a fixed sample number ,

where is the number of samples within the th
stratum. The weight of each sample in the th stratum
is . The intuitive meaning of Neyman optimal
allocation is that more sampling points should be as-
signed to a stratum if it has a larger area and a more
significant variation than other strata.

Step 5) Determining the spatial distribution of each sample point
Steps 1–3 considered the feature space of the study

site to assign the samples to the strata. The structure of
the geographic space must be considered when assign-
ing samples to each stratum. The samples should be
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dispersed to assure a better spatial representation of the
site. The nearest neighbor index (NNI), which is one of
themostwidely used distance statistics, is recommended
to be used to describe the point distribution pattern [40].
The nearest neighbor distance is calculated as
follows:

where is the distance between each point and
the point nearest to it and is the number of sampling
points. The mean random distance is then cal-
culated, which is the value that one would
expect if the distribution were random

where is the area of the site and n is the number of
sampling points. Finally, the NNI is computed as fol-
lows:

The ratio is equal to one when the distribution is
random. Values less than one indicate aggregation,
whereas values greater than one indicate a dispersed
distribution. In the sampling area, 1000 groups of sam-
pling points are randomly generated for a fixed number
of samples in each stratum. The group combination that
has the highest NNI value is selected as the optimum
sample set.

III. EFFICIENCY EVALUATION PROCEDURE

Evaluating the efficiency of a sampling strategy directly is
challenging because the true values of the population are typi-
cally unavailable in practice,which iswhy sampling is necessary.
In this study, we design a direct sampling efficiency evaluation
procedure based on a PROSAIL model in the framework of a
“bottom-up” LAI product validation procedure [19]. The proce-
dure is shown in Fig. 1.

In the proposed evaluation procedure, the high-resolution LAI
map and vegetation classification map are required before sam-
pling to drive the PROSAIL model to simulate the high-resolu-
tion reflectance imagery. The general medium-resolution LAI
product validation workflow was then conducted using different
sampling strategies. The different sampling strategies resulted in
different transfer functions, and thus, different LAI reference
maps were generated. Finally, the LAI reference maps were
aggregated to medium resolution. The high-resolution LAI map
was regarded as the true value LAI dataset; it was aggregated to
medium resolution and served as a benchmark for evaluating the
LAI reference maps. The efficiency of the different sampling
strategies can thus be analyzed and evaluated.

Two areas covered by crop and broadleaf forest (Fig. 2) were
used to evaluate the efficiency and analyze the sampling strategy.
The two sites correspond to agricultural fields and natural forest,
which have different spatial structures and variability character-
istics. The cropland site is in Sud-Ouest, France, and covers an

area of . It includes five classes. Class 1 is composed
of soy beans and woodland, Class 2 is composed of poplars,
fallow fields, and grassland, Classes 3 and 4 are composed of
mature or harvested wheat fields and fallow fields, and Class 5 is
composed of corn, soy beans, and sunflowers [41]. The broadleaf
forest area is located in Camerons, Australia, and covers an area
of . It corresponds to a natural Australian forest on
gently undulated topography. The vegetation is composed of
several local species, and the understory is relatively dry with
sparsely distributed grasses and bushes. This site consists of four
classes. Class 1 is composed of tea trees, Class 2 is composed of
casuarina, Class 3 is composed of banksia and blackbutt, and
Class 4 includes wide forest roads [42].

The simulation of high-resolution reflectance imagery, ESU
sampling strategy, simulated individual measurement, and trans-
fer function are introduced below.

A. Simulation of High-Resolution Reflectance Imagery

The objective of the simulation is not to obtain the real satellite
image but to determine the true LAI values and vegetation
canopy reflectance simultaneously for the analysis and evalua-
tion. The PROSAIL model was used to simulate the high-
resolution reflectance map. The 20-m-resolution LAI map pro-
vided by theVALERI dataset was used as the input parameters to
drive the PROSAILmodel. Due to the lack of information on the
leaf biochemical properties of each vegetation type and the soil
reflectance at the study sites, we used reasonable values of typical
vegetation types provided by the vegetation status description of
each ESU provided by the VALERI campaign reports [41], [42]
as input parameters to simulate the images of the two sites. A
typical soil spectrum from the spectral library [43] was used in
the PROSAIL model, which includes reflectances of 0.195 and
0.297 in the red and near-infrared (NIR) bands, respectively.
Tables I and II provide the value of each input parameter of each
vegetation type [33]. N is the leaf structure parameter that

Fig. 1. Sampling efficiency evaluation framework based on the PROSAIL
model.
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denotes the number of homogeneous layers, is the chloro-
phyll a and b content, is the equivalent water thickness, and

is the dry matter content. ALA is the average leaf inclination
angle. The leaf inclination angle distribution patterns of the
vegetation types at Sud-Ouest, including woodland, grassland,
wheat, and corn, are set as planophile, uniform, plagiophyre, and
spherical, respectively [44]. The leaf inclination angle distribu-
tion at Camerons is set as planophile for the broadleaf canopy
cover.

For the image simulation, and are assigned to change
by . The view illumination geometries are set according to
the SPOT data from which the high-resolution LAI map was
derived [41], [42]. Because N and ALA are closely related to the

vegetation type, the input values are held constant for one class.
The value is also held constant for pixels of one class because
the simulated bands are not in the water absorption bands. The
spectral response function of SPOT4 was used to simulate the
band spectra.

Considering the errors caused by such factors as the imperfect
atmospheric correction and geolocation uncertainties, Gaussian
noise was added to the reflectance imagery. The theoretical
estimation of the relative uncertainties for the atmospherically
corrected MODIS green, red, and NIR spectral bands are

, , and , respectively [45].
We added corresponding Gaussian white noise to the reflectance
imagery.

Fig. 2. 20-m resolution LAImaps of (a) the Sud-Ouest site and (b) the Camerons site. The Sud-Ouest site covers an area of , and the dominant vegetation
type is cropland. The Camerons site covers an area of , and the dominant vegetation type is broadleaf forest.

TABLE I
VALUES OF THE INPUT PARAMETERS TO DRIVE PROSAIL SIMULATION FOR FIVE CLASSES AT THE SUD-OUEST SITE

TABLE II
VALUES OF THE INPUT PARAMETERS TO DRIVE PROSAIL SIMULATION FOR THREE CLASSES AT THE CAMERONS SITE
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B. ESU Sampling Strategy

Because Martinez et al. [31] confirmed that the recently used
stratified sampling strategy performs better than systematic
sampling, we compared SSVIP (Method 1) to the current sam-
pling strategy based on vegetation types (Method 2), which
allocated the number of samples in proportion to the areas
covered by the vegetation types across the entire site.

The generation of sampling points by SSVIP follows the
process described in Section II-B. The corresponding NDVI
and SR maps are derived using the simulated high-resolution
reflectance imagery. The NDVI was a good choice at Sud-Ouest.
At Camerons, NDVI reaches saturation, so the SR was used
instead. To compare with the sampling based on vegetation
types, the VI map is classified with the same number of classes
as the number of vegetation types. The optimal segmentation
thresholds are determined by the OF in (2); the intervals are [0,
0.33), [0.33, 0.52), [0.52, 0.71), [0.71, 0.85), and [0.85, 1) for
NDVI at Sud-Ouest and [0, 6.85), [6.85, 12.00), [12.00, 14.97),
and [14.97, 23.53) for SR at Camerons. In the analysis, the
number of samples ranges from 10 to 100 with a step of 10, and
the number of samples assigned to each class is consistent with
Neyman optimal allocation. The optimum sample set is selected
by NNI as discussed in Section II-B.

C. Simulated Individual Measurement

Fieldmeasurements always differ from the true values because
of measurement errors. Field measurement errors are caused by
optical instrument calibration, saturation of the optical signal in
dense canopies, insufficient spatial samplingwithin theESU, and
geolocation errors [46], [47]. In the validation procedure based
on themodel simulation, we add 20%Gaussianwhite noise to the
LAI map and then set the corresponding value as the individual
measurement. Considering the noise in the data, this step was
repeated times to test the stability of the method. The
performance will be analyzed in Section IV-A.

D. Upscaling Method

Upscaling is used to transfer the LAI fieldmeasurements at the
ESUs to the LAI reference map. The upscaling method directly
affected the accuracy of the LAI reference map by extrapolation
from the limited sample set to the entire site in the geographical
space. The site-specific transfer function is currently the main
upscaling method based on ground measurements [19]. It

establishes a relationship between the average LAI values from
each ESU and the corresponding high-resolution reflectance or
VI. The LAI values of the sampling points from the high-
resolution LAI map with Gaussian noise in Section III-C is
regarded as the ground measurement value of the ESU, and we
use direct pixel-by-pixel correlation. The least-squares regres-
sion method is tested on the NDVI and SR for the upscaling
process, and the transfer function that has a lower RMSE is
selected as the optimum function. For the Sud-Ouest site, the SR
has a lower RMSE than the NDVI, so the relationship between
the SR and LAI is used as the transfer function for the Sud-Ouest
site. The selected transfer functions of the two sites are shown in
Table III. Both methods display reasonable fitting performance,
although Method 2 fits slightly better than Method 1 because it
has a lower RMSE and a higher . A direct comparison of the
goodness of fit of the two methods may be meaningless because
the and RMSE values are calculated with different sample
sets. In LAI product validation, the role of the transfer function is
to extrapolate from the sample set to the entire site, and whether
the transfer function can be extended to the entire site is another
issue that will be discussed in Sections IV-C and IV-D.A transfer
function may fit well for the sample set or in a local region, but it
may not perform well when it is extrapolated to the entire site.

E. Comparison of the Aggregated LAI Reference Map to the
Benchmark

After the LAI reference map was obtained by applying the
transfer function over the site, it was aggregated to a 1-km
resolution. The original high-resolution LAI map was also
aggregated to a 1-km resolution and was considered as the
benchmark for the evaluation. The root mean square error
(RMSE) between the aggregated LAI reference map and bench-
mark was calculated to represent the accuracy of the correspond-
ing sampling strategy. To analyze the accuracy and stability of
the method with increasing numbers of samples, the RMSEs
were calculated for 10–100 samples at intervals of 10.

IV. ANALYSIS BASED ON THE SIMULATED IMAGES

A. Accuracy and Stability of the Two Methods

In this paper, “Method 1” is used to refer to the SSVIP
approach and “Method 2” is used to refer to the sampling strategy
based on vegetation types. In this section, Method 1 is compared

TABLE III
TRANSFER FUNCTIONS AND THE CORRESPONDING RMSE AND OF TWO METHODS AT THE TWO STUDY SITES
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with Method 2 to analyze their accuracy and stability. Fig. 3
presents the change in the average RMSE in the study area with
an increasing number of samples at Sud-Ouest and Camerons.
The RMSE decreased with an increasing number of samples for
fewer than 80 samples, whereas the RMSE values based on the
two methods remained constant for more than 80 samples. The
RMSE of Method 1 is always less than that of Method 2. Thus,
the accuracy of both methods improves with an increasing
number of samples, but Method 1 performs better than Method
2. Even when the RMSE becomes stable and reaches the opti-
mum value, the RMSE of Method 1 is approximately 0.02 less
than that of Method 2 at Sud-Ouest and 0.01 less at Camerons.
Furthermore, Method 1 becomes stable more quickly than
Method 2, which indicates that the samples chosen by Method
1 are more representative of the study site. Thus, the LAI
reference map generated by SSVIP improves the average accu-
racy of the LAI reference map by at least 0.04, and the method
becomes stable more quickly than the current sampling strategy.

The evaluation procedure was repeated times, and
after removing the highest and
lowest RMSE values, the RMSE in Fig. 3 was compared with
the remaining 950 RMSE values. is defined as the larger
deviation from the RMSE in Fig. 3 from the highest and lowest
values of the 950 residual RMSE series. At the Sud-Ouest site,
Method 1 has deviations of 0.01 for 10 samples and less than
0.01 for 20–100 samples, whereas Method 2 has a deviation of
0.01 for 10 and 20 samples and deviations less than 0.01 for
30–100 samples. At the Camerons site, Method 1 has deviations
less than 0.01 for 10–100 samples, whereas Method 2 has a

deviation of 0.01 for 10 samples and deviations less than 0.01 for
20–100 samples. These results suggest that the noise associated
with the data can be filtered when averaging the high-resolution
reference LAI map to a 1-km resolution. Furthermore, the results
are statistically representative when comparing with the range
of RMSE values in Fig. 3.

B. Sample Number and Heterogeneity

Fig. 3 illustrates that the proposed Method 1 requires 40
samples to reach the stable accuracy of 0.1 at Sud-Ouest, whereas
Method 2 requires approximately 80 samples. At Camerons,
Method 1 requires approximately 30 samples to reach the stable
accuracy of 0.1, whereas Method 2 requires approximately 80

samples. SSVIP always requires fewer samples thanMethod 2 to
attain a higher accuracy. Fig. 3 also illustrates that both methods
reach the stable accuracy more quickly at Camerons than at Sud-
Ouest because of the different amounts of heterogeneity at the
two sites.

The heterogeneity also affects the determination of the number
of samples. Generally, heterogeneity is shown in the feature
space and geographical space. Feature heterogeneity can be
quantitatively described by the variance of the corresponding
parameter. The average LAIs of the 20-m resolution LAImap are
1.96 at Sud-Ouest and 2.13 at Camerons. Theminimumvalues of
LAI at both sites are zero, whereas the maximum values are 5.65
and 4.10, respectively. The variance at Sud-Ouest is 2.15, which
is significantly higher than the variance of 0.33 at Camerons.
This difference in variance indicates that the vegetation is much
more heterogeneous at Sud-Ouest than at Camerons.

A semivariogram was used to quantitatively describe the
spatial heterogeneity in the geographical space. The semivar-
iance of variances between all pairs of points and

that are separated by a distance can be calculated as

Fig. 3. Changes of RMSE in Method 1 and Method 2 with the increasing of samples number at (a) the Sud-Ouest site and (b) the Camerons site.

Fig. 4. Semivariance in LAI with increasing lag distance from 20 to 740 m at the
Sud-Ouest site, which has an area of , and at the Camerons site,
which has an area of .
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Fig. 4 presents the LAI variograms at the two sites. The global
variance (sill) is significantly higher at Sud-Ouest than at Ca-
merons, which indicates that the geographical space at the Sud-
Ouest site is more heterogeneous than at the Camerons site. The
high heterogeneity of Sud-Ouest is shown by the intermixing of
the crop fields with high LAI values and the soil fields with low
vegetation cover. The Camerons site mainly contains green
understory and a high density of broadleaf trees, which homo-
genizes the LAI distribution. As a result, the broadleaf forest site
is more homogeneous than the crop site at the landscape level.

Fig. 3 illustrates that the Sud-Ouest site requires more samples
to attain the same accuracy than the Camerons site, although the
area of the former is smaller than the latter. This finding suggests
that heterogeneity is an important factor that affects the determi-
nation of the sample number. A heterogeneous site requires more
samples than a homogeneous site to meet the same target
accuracy.

C. Representation of ESU Samples in the Feature Space

Because the number of pixels in the ESUs is different from the
entire site, the two histograms cannot be compared directly. After
transforming the histograms to frequency distribution histo-
grams at the given interval, the samples and entire site can be
compared at the same standard. Fig. 5 presents the frequency
distribution histograms of the LAImap and the ESUs selected by
the two methods. At Sud-Ouest, intervals 0–1 and 2–3 are
slightly oversampled by Method 1, whereas intervals 1–2, 3–
4, and 4–5 are undersampled. Using Method 2, intervals 1–2, 3–
4, and 4–5 are oversampled, whereas 0–1 and 2–3 are under-
sampled. The variable BIAS is used to quantitatively represent
the difference between the histograms. BIAS is defined as

where is the number of samples in interval , n is the sample
size, and is the proportion of the image in interval . At Sud-
Ouest, Method 1 has a BIAS of 0.09, whereas Method 2 has a
BIAS of 0.22. This finding indicates that the sample histogram
generated by Method 1 is more similar to the entire image than
the histogram generated by Method 2 and demonstrates that the

samples selected byMethod 1 can represent the entire Sud-Ouest
site. At Camerons, both methods are oversampled in interval 1–2
but are undersampled in interval 2–3. The BIAS is 0.21 using
Method 1 and 0.39 usingMethod 2, which also illustrates that the
samples from Method 1 are more representative than those from
Method 2.

The analysis presented above also illustrates that bothmethods
have a higher BIAS at Camerons than at Sud-Ouest. This
difference in BIAS is partly because the VI of the Camerons
area is classified into four classes, whereas the Sud-Ouest side
uses five classes. The method has more constraints on the feature
distribution of the samples as the number of classes increases.
Another possible reason for the difference in BIAS is that the
stratified sampling strategy is more applicable over heteroge-
neous surfaces. For homogeneous surfaces, there is little helpful
information in the feature space that can be utilized by the
stratified strategy whether it is based on VI or vegetation type.
The performance became similar to the methods that do not use
stratified strategies.

D. Representation of ESU Samples in the Geographical Space

Fig. 6 presents the spatial distribution of the samples selected
by the two methods at Sud-Ouest and Camerons. The back-
ground images are false color composite maps of the simulated
high-resolution reflectance images. The samples selected by
Method 2 at Sud-Ouest [Fig. 6(b)] are clustered on the upper-
left and lower-right sides, and a considerable empty area is
present on the lower-left side. This phenomenon is also present
at Camerons but is slightly attenuated [Fig. 6(d)]. The samples
selected byMethod 1 are spread across the entire area at both sites
[Fig. 6(a) and (c)]. The NNIs for Fig. 6(a), (b), (c), and (d) are
1.32, 0.99, 1.47, and 1.12, respectively. The results indicate that
the samples selected by Method 2 are similar to a random
distribution, whereas the samples selected by Method 1 are
similar to the dispersed distribution. The sampling strategy based
on the VI performs better in reducing the redundancy of the
sampling information.

E. Accuracy of the LAI Reference Maps

Fig. 7 presents the degraded LAI map and the error of
the LAI reference maps generated by the two methods at

Fig. 5. LAI frequency distribution histograms of the entire site and the samples selected by the two methods. The number on the horizontal axis represents the LAI
value in the interval [ , ). The vertical axis represents the percentage of the LAI frequency distribution in the given interval. (a) Sud-Ouest. (b) Camerons.

ZENG et al.: SAMPLING STRATEGY FOR REMOTELY SENSED LAI PRODUCT VALIDATION 3135



Sud-Ouest and Camerons based on the framework described
in Fig. 1 and Section III. At the Sud-Ouest site, the RMSEs
from Methods 1 and 2 are 0.10 and 0.14, respectively. The
maximum BIAS values are 0.17 for Method 1 and 0.20 for
Method 2. At the Camerons site, the RMSEs are 0.10 for
Method 1 and 0.14 for Method 2, and the maximum biases
are 0.19 and 0.28, respectively. Method 1 outperforms Meth-
od 2 at both sites.

The sampling strategy is a key factor that affects the accuracy
of the LAI reference map. The spatial sampling strategy deter-
mines which samples can represent the site in terms of the
features and the spatial distribution. These samples determine
the coefficients of the transfer function, which will ultimately
affect the accuracy of the LAI reference map in the validation
procedure. Therefore, an efficient sampling strategy must cover
the entire range of LAI values and have good coverage of the
area, an accurate estimation of the LAI, and good spatial
representativeness of the entire site. Consequently, an accurate
and robust transfer function that accurately represents the site can
be established.

Even under the same sampling strategy, the error caused by
different medium-resolution pixels can vary considerably
(Fig. 7). For a given sample dataset, the prediction error is
affected by the difference between the sample and pixel mean
( ) and the heterogeneity of the pixel ( ) when , ,
, and are fixed.
The pixels with relatively high LAI values typically have

larger errors (Fig. 7). For example, pixels A and B have the
largest LAI at Sud-Ouest (2.58) and at Camerons (2.44), respec-
tively, and both have the maximum bias from the two methods
(0.17 and −0.19 for Method 1, 0.20 and −0.28 for Method 2).
This result can be explained by (1), where a higher LAI value of a
pixel is more likely to yield a larger value of when

, , , and are fixed. However, for a given sampling
strategy, the influence of a high LAI value on the prediction error
may be compensated for by low heterogeneity within the pixel,
which can cause the error to be small. According to (1), the
prediction error of a pixel is a complex interaction between the
LAI, heterogeneity, and transfer function for a given sampling
strategy.

Fig. 6. Spatial distribution of samples at Sud-Ouest by (a) Method 1 and (b) Method 2, and at Camerons by (c) Method 1 and (d) Method 2.

Fig. 7. Accuracy evaluation of the LAI reference maps by the two methods. The graphs illustrate the degraded LAI maps and LAI reference map error at Sud-Ouest
(a)–(c) and atCamerons (d)–(f) byMethod1 andMethod2. (a)DegradedLAImap. (b) LAI referencemap error byMethod1. (c) LAI referencemap error byMethod2 at
the Sud-Ouest site. (d) Degraded LAI map. (e) LAI reference map error by Method 1. (f) LAI reference map error by Method 2 at the Camerons site.
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V. ANALYSIS BASED ON THE VALERI DATASET

The advantage of the analysis based on simulated images is
that the accuracy and stability of the sampling strategy can be
analyzed using the provided LAI base map as the true values.
However, the simulated heterogeneous characteristics are limit-
ed due to the lack of information about parameters at the study
site other than the LAI, such as leaf chlorophyll, water content,
and soil reflectance, which can impact the results. The VALERI
field campaign established a global network of LAI observation
sites that cover a wide range of vegetation types. The dataset has
been widely used in LAI product validation studies [21], [34],
[48]. The sampling strategy in the VALERI project was mainly
based on vegetation types [32]. Thus, SSVIP was applied to 24
actual validation sites from the VALERI dataset and was com-
pared with the sampling strategy used in the VALERI project.
Because of the lack of true LAI measurements, only those values
representative of ESUs from different sampling strategies in the
feature space and geographical space were analyzed.

A. Site Description and Heterogeneity Analysis

The VALERI project includes 24 actual validation sites
(Table IV), and corresponding 20-m resolution SPOT-HRV
images were acquired several days before or after the LAI field
measurements were taken. Radiance calibration was performed
on all of the images, and the images were georeferenced to the
UTM/WGS84 projection. No atmospheric correction was ap-
plied because all of the images are cloud free, and it is safe to
assume that the effect of the atmosphere was identical over the
validation sites [19]. NDVI images of the 24 validation siteswere
generated using the SPOT-HRV images.

Fig. 8 compares the mean ( ) and standard deviation ( )
of theNDVI images of the 24 validation sites. The results suggest
that the cropland sites have medium vegetation cover ( ranges
from 0.280 to 0.619) and are the most heterogeneous sites (
ranges from 0.113 to 0.230) except for Plan-de-Dieu. This
finding is due to the intermixing of crop fields with high NDVIs
and bare soil with low NDVIs. The Plan-de-Dieu site has the
lowest heterogeneity ( is 0.070) of the cropland sites; the
vegetation cover in the crop fields is relatively low ( equals
0.254), which decreases the NDVI variability between the crop
fields and bare soil fields. In contrast, forest sites have the highest
vegetation cover ( ranges from 0.520 to 0.733) but are more

TABLE IV
DATASET OF THE 24 VALERI VALIDATION SITES (THE DETAILED INFORMATION CAN BE FOUND AT http://w3.avignon.inra.fr/valeri/)

Date is the LAIfield campaign time. and are themean and standard deviation of theNDVI images, respectively. and are themeanNDVI of
the ESUs selected by SSVIP and the VALERI campaign, respectively. and are the NDVI standard deviations of the ESUs selected by SSVIP and the
VALERI campaign, respectively. and are the NNI of the ESUs selected by SSVIP and the VALERI campaign, respectively.

Fig. 8. Mean and standard deviation of the NDVI images at the 24 VALERI
validation sites for a total of seven vegetation types.
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homogeneous than cropland sites ( ranges from 0.037 to 0.106).
The source of the heterogeneity was the presence of nonvege-
tated areas (roads and open areas), such as in Nezer and Pué-
chabon, and the mixed distribution of cropland and forest, such
as in Chilbolton. Grassland sites, also have medium vegetation
cover levels similar to the cropland sites, but they are more
homogeneous, with values of less than 0.113. This analysis
demonstrates that the cropland sites typically have the highest
heterogeneity, whereas the natural vegetation areas, such as
forest, grassland, and shrubland sites, have lower variability at
the 24 VALERI sites.

B. Representative Analysis

The location of eachESU in theVALERI siteswas provided in
the VALERI campaign reports [32]. The number of ESUs for
each vegetation type was generally proportional to the area of
that type [32]. The generated NDVI images of the 24 validation
sites were used as a priori knowledge in SSVIP to determine the
distribution of the ESUs. To allow for a comparison with the
VALERI project, the number of ESUs at each site in SSVIP was
set to be the same as that in the VALERI campaign reports. As
discussed in Step 3 in Section II-B, the number of strata was set
equal to the number of ESUs to achieve the highest efficiency.
The optimal segmentation thresholdwas determined by theOF in
(2), and the optimum sample set was selected by NNI, as
discussed in Section II-B.

The representation of the ESUs in the feature space was
evaluated. Fig. 9 presents the NDVI cumulative frequency
distribution of the ESUs selected by SSVIP and by the VALERI
campaign as well as the NDVI distribution over the entire image
at the 24 validation sites. The NDVI distribution of the ESUs

selected bySSVIP ismore consistent with that of the entire image
than that given by the VALERI campaign at most of the sites.
Fig. 10 compares the means and standard deviations of the ESUs
selected by the twomethods and the entire image. The difference
between the mean NDVI of the ESUs selected by SSVIP and that
of the entire image is within 0.006 for all 24 validation sites,
suggesting that the ESUs selected by SSVIP are unbiased and are
well represented in the feature space. Figs. 9 and 10(a) illustrate
that at Barrax, Fundulea, and Alpilles, the ESUs selected by the
VALERI campaign are largely oversampled in areas with high
NDVIs; this oversampling is caused by the difference of 0.07
between the mean NDVI of the ESUs and the population. At
Barrax, areas with NDVI values lower than 0.12, between 0.21
and 0.29, and between 0.35 and 0.42 were not sampled. At
Fundulea, areas with NDVI values lower than 0.33 and between
0.34 and 0.69were not sampled.AtGilching, Romilly-sur-Seine,
Nezer, Sonian, and Järvselja, the ESUs are slightly oversampled
in high-NDVI areas. At Gilching, areas with NDVI values
between 0.33 and 0.57 were not sampled. At Laprida, Concep-
ción and Chilbolton, the ESUs are slightly undersampled in areas
of high NDVI. Fig. 10(b) illustrates that at Fundulea, Sonian and
Nezer, the standard deviations of the ESUs selected by the
VALERI campaign are clearly less than those of the entire
image, indicating that the ESUs were clustered and not spread
across the feature space. This analysis illustrates that the ESUs
selected by SSVIP are more representative of the feature space
than the sampling strategy in the VALERI campaign.

The representation of the ESUs in the geographical space was
then evaluated. Fig. 11 compares the NNIs of the ESUs selected
by the two methods. According to the definition of NNI, values
greater than one indicate a dispersed distribution. The NNI
values from SSVIP are greater than 1.55 at all 24 validation

Fig. 9. NDVI cumulative frequency distributions of the ESUs selected by SSVIP (blue) and by the VALERI campaign (green), and the NDVI cumulative frequency
distribution over the entire image (red) at the 24 VALERI validation sites.
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sites, whereas the NNI values at 13 sites from the VALERI
campaign are less than one. The NNI values from SSVIP are
higher than those from the VALERI campaign at all of the
validation sites. This result indicates that the ESUs from SSVIP
are well dispersed and have good coverage across the geograph-
ical space. The NNI values at Nezer, Barrax, and Wankama are
less than 0.5, which indicates strong spatial clustering.

This analysis illustrates that SSVIP is more representative in
both the feature and geographical spaces than the sampling
strategy in the VALERI campaign. In the VALERI project, the
corresponding SPOT images of the validation sites were ac-
quired several days before or after the LAI field measurements
were taken. Because the image was not acquired when the field
measurements were taken, the image used in analysis is the same
as that used as a priori knowledge, which is why the ESUs
selected by SSVIP are consistent with the population of the entire
site. This result also demonstrates that SSVIP can performwell if
the NDVI map used as a priori knowledge is similar to that
acquired when the experiment was performed.

VI. CONCLUSION

We developed a spatial sampling strategy (SSVIP) using a
high-resolution VI map for LAI product validation over hetero-
geneous surfaces based on a bottom-up validation framework.
Compared with the widely used sampling strategy based on
vegetation types, SSVIP is more suitable for sampling over
heterogeneous areas. In theory, with the bottom-up validation
framework, the choice of the prior knowledge for the stratified
sampling method is affected by the method used to build the
transfer function. A uniform empirical relationship between the
LAI and the reflectance or VI is widely used to build the transfer
function. Therefore, the VI, which is related to the vegetation
growth stage, is most suitable as a priori knowledge. The results
also demonstrate that SSVIP has good performance in the
following areas: 1) the LAI reference map from SSVIP is more
accurate and stable than that from the sampling strategy based on
vegetation types; 2) SSVIP requires fewer samples to become
stable and has higher accuracy; and 3) the samples from SSVIP
are spread across the feature space and the geographical space.
These improvements generate an accurate LAI reference map
and reasonable validation over heterogeneous areas for coarse-
and moderate-resolution LAI products.

An NDVI map acquired in advance is needed as a priori
knowledge for SSVIP. The analysis in Section V-B illustrates
that SSVIP can perform well if the NDVI map used as a priori
knowledge has smaller differences than that acquired when the
experiment was performed. The NDVI map is important for the
application of the SSVIP. In some regions, the NDVImap can be
obtained close to the time of the field campaign due to the
coverage of high-temporal-resolution and high-spatial-resolu-
tion satellites. For example, the satellite HJ-1A/1B, which was
launched by China in 2009, has a revisit cycle of two days and a
30-m resolution attained by satellite networking and only covers
China. However, there may be a long interval between the
acquisition time of the VI map and the field measurements in

Fig. 10. NDVI (a) mean and (b) standard deviations of the ESUs selected by two
methods (SSVIP and VALERI campaign) and the entire image at 24 VALERI
validation sites for a total of seven vegetation types.

Fig. 11. Evaluation of the ESUs representation in the geographical space.
Comparison of the NNI of the ESUs selected by SSVIP and by the VALERI
campaign at 24 VALERI validation sites. According to the definition of the NNI,
an NNI greater than one indicates a dispersed distribution, whereas an NNI less
than one indicates aggregation.
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some regions. In this case, SSVIP could be used as well if the
vegetation growth is stable and there are only small variations in
the heterogeneity of the region. The application of SSVIP is
limited if the vegetation is rapidly increasing or decreasing.

The aim of SSVIP is to improve the accuracy of the LAI
reference map and to improve the representation of ESUs. In
practice, the feasibility of performing an experiment at the
locations of the chosen ESUs and other factors, such as man-
power, should be considered. For example, some ESUs may be
located in the mountainous areas, where it is difficult to perform
experiments. This problem could be solved by excluding the
areas that cannot be reached. The other deficiency of SSVIP is
that there is no universal method to quantitatively determine the
number of samples by considering the site area and heterogene-
ity. The analysis in this paper illustrates that the heterogeneity
characteristics of the sampling area have a clear influence on the
number of samples. Further research is necessary to overcome
these deficiencies. The other research direction is to combine the
VI and vegetation types as a priori knowledge. The transfer
function should consider the vegetation type as well. Both of
these items will further improve the accuracy of the LAI refer-
ence map and LAI ground validation data.
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